Skip to main content
Erschienen in: Microsystem Technologies 2/2015

01.02.2015 | Technical Paper

Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams

verfasst von: Ehsan Maani Miandoab, Aghil Yousefi-Koma, Hossein Nejat Pishkenari

Erschienen in: Microsystem Technologies | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Conventional continuum theory does not account for contributions from length scale effects which are important in modeling of nano-beams. Failure to include size-dependent contributions can lead to underestimates of deflection, stresses, and pull-in voltage of electrostatic actuated micro and nano-beams. This research aims to use nonlocal and strain gradient elasticity theories to study the static behavior of electrically actuated micro- and nano-beams. To solve the boundary value nonlinear differential equations, analogue equation and Gauss–Seidel iteration methods are used. Both clamped-free and clamped–clamped micro- and nano-beams under electrostatical actuation are considered where mid-plane stretching, axial residual stress and fringing field effect are taken into account for clamped–clamped cases. The accuracy of solution is evaluated by comparison of the pull-in voltages of different micro-electro-mechanical systems with those results previously published in the literature. A main drawback of the previous theoretical researches using nonlocal or strain gradient methods was that they don’t account for effects of the size on the Young modulus of the beam and merely they adjust the length scale parameters for small sizes to fit data with experimental results. In the present study, the experimental voltages for static pull-in of different micro- and nano-beams are used to estimate the silicon Young’s modulus, nonlocal and length scale parameters. Using the estimated parameters, pull-in voltages of silicon micro- and nano-beams based on strain gradient and nonlocal theories are compared with respect to each other and also with the experimental and previous theoretical results. The conducted results demonstrate that the predicted pull-in voltages using proposed strain gradient theory will give the best fit with experimental observations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdel-Rahman EM, Younis MI, Nayfeh AH (2002) Characterization of the mechanical behavior of an electrically actuated microbeam. J Micromech Microeng 12(6):759CrossRef Abdel-Rahman EM, Younis MI, Nayfeh AH (2002) Characterization of the mechanical behavior of an electrically actuated microbeam. J Micromech Microeng 12(6):759CrossRef
Zurück zum Zitat Akgöz B, Civalek Ö (2012) Comment on “Static and dynamic analysis of micro beams based on strain gradient elasticity theory” by S. Kong, S. Zhou, Z. Nie, and K. Wang (International Journal of Engineering Science, 47, 487–498, 2009). Int J Eng Sci 50(1):279–281 Akgöz B, Civalek Ö (2012) Comment on “Static and dynamic analysis of micro beams based on strain gradient elasticity theory” by S. Kong, S. Zhou, Z. Nie, and K. Wang (International Journal of Engineering Science, 47, 487–498, 2009). Int J Eng Sci 50(1):279–281
Zurück zum Zitat Sadeghian H et al (2009) Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability. Appl Physics Lett 94(22):221903–221903-3 Sadeghian H et al (2009) Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability. Appl Physics Lett 94(22):221903–221903-3
Zurück zum Zitat Zhao J, Zhou S, Wang B, Wang X (2012) Nonlinear microbeam model based on strain gradient theory. Appl Math Model 36(6):2674–2686 Zhao J, Zhou S, Wang B, Wang X (2012) Nonlinear microbeam model based on strain gradient theory. Appl Math Model 36(6):2674–2686
Zurück zum Zitat Rokni H, Seethaler RJ, Milani AS, Hosseini-Hashemi S, Li X-F (2013) Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral method. Sens Actuators A Phys 190:32–43 Rokni H, Seethaler RJ, Milani AS, Hosseini-Hashemi S, Li X-F (2013) Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral method. Sens Actuators A Phys 190:32–43
Zurück zum Zitat Baghani M (2012) Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. Int J Eng Sci 54:99–105CrossRefMathSciNet Baghani M (2012) Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory. Int J Eng Sci 54:99–105CrossRefMathSciNet
Zurück zum Zitat Bochobza-Degani O, Nemirovsky Y (2002) Modeling the pull-in parameters of electrostatic actuators with a novel lumped two degrees of freedom pull-in model. Sens Actuators A 97:569–578CrossRef Bochobza-Degani O, Nemirovsky Y (2002) Modeling the pull-in parameters of electrostatic actuators with a novel lumped two degrees of freedom pull-in model. Sens Actuators A 97:569–578CrossRef
Zurück zum Zitat Choi B, Lovell E (1999) Improved analysis of microbeams under mechanical and electrostatic loads. J Micromech Microeng 7(1):24CrossRef Choi B, Lovell E (1999) Improved analysis of microbeams under mechanical and electrostatic loads. J Micromech Microeng 7(1):24CrossRef
Zurück zum Zitat Chong AC, Lam DC (1999) Strain gradient plasticity effect in indentation hardness of polymers. J Mater Res Pittsbg 14:4103–4110CrossRef Chong AC, Lam DC (1999) Strain gradient plasticity effect in indentation hardness of polymers. J Mater Res Pittsbg 14:4103–4110CrossRef
Zurück zum Zitat Chowdhury S, Ahmadi M, Miller W (2005) A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams. J Micromech Microeng 15(4):756CrossRef Chowdhury S, Ahmadi M, Miller W (2005) A closed-form model for the pull-in voltage of electrostatically actuated cantilever beams. J Micromech Microeng 15(4):756CrossRef
Zurück zum Zitat Chu PB et al (1996) Dynamics of polysilicon parallel-plate electrostatic actuators. Sens Actuators A 52(1):216–220CrossRef Chu PB et al (1996) Dynamics of polysilicon parallel-plate electrostatic actuators. Sens Actuators A 52(1):216–220CrossRef
Zurück zum Zitat Collard D, Takeuchi S, Fujita H (2008) MEMS technology for nanobio research. Drug Discov Today 13(21):989–996CrossRef Collard D, Takeuchi S, Fujita H (2008) MEMS technology for nanobio research. Drug Discov Today 13(21):989–996CrossRef
Zurück zum Zitat Eringen AC (2002) Nonlocal continuum field theories. Springer, BerlinMATH Eringen AC (2002) Nonlocal continuum field theories. Springer, BerlinMATH
Zurück zum Zitat Fu Y, Zhang J (2009) Nonlinear static and dynamic responses of an electrically actuated viscoelastic microbeam. Acta Mech Sin 25(2):211–218CrossRefMATHMathSciNet Fu Y, Zhang J (2009) Nonlinear static and dynamic responses of an electrically actuated viscoelastic microbeam. Acta Mech Sin 25(2):211–218CrossRefMATHMathSciNet
Zurück zum Zitat Fu Y, Zhang J (2011) Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies. Appl Math Model 35(2):941–951CrossRefMathSciNet Fu Y, Zhang J (2011) Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies. Appl Math Model 35(2):941–951CrossRefMathSciNet
Zurück zum Zitat Haluzan DT et al (2010) Reducing pull-in voltage by adjusting gap shape in electrostatically actuated cantilever and fixed–fixed beams. Micromachines 1(2):68–81CrossRef Haluzan DT et al (2010) Reducing pull-in voltage by adjusting gap shape in electrostatically actuated cantilever and fixed–fixed beams. Micromachines 1(2):68–81CrossRef
Zurück zum Zitat Heireche H, Tounsi A, Benzair A (2008) Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading. Nanotechnology 19(18):185703CrossRef Heireche H, Tounsi A, Benzair A (2008) Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading. Nanotechnology 19(18):185703CrossRef
Zurück zum Zitat Hu Y-C, Chang C, Huang S (2004) Some design considerations on the electrostatically actuated microstructures. Sens Actuators A 112(1):155–161CrossRef Hu Y-C, Chang C, Huang S (2004) Some design considerations on the electrostatically actuated microstructures. Sens Actuators A 112(1):155–161CrossRef
Zurück zum Zitat Ijntema DJ, Tilmans HA (1992) Static and dynamic aspects of an air-gap capacitor. Sens Actuators A 35(2):121–128CrossRef Ijntema DJ, Tilmans HA (1992) Static and dynamic aspects of an air-gap capacitor. Sens Actuators A 35(2):121–128CrossRef
Zurück zum Zitat Joglekar M, Pawaskar D (2011) Closed-form empirical relations to predict the static pull-in parameters of electrostatically actuated microcantilevers having linear width variation. Microsyst Technol 17(1):35–45CrossRef Joglekar M, Pawaskar D (2011) Closed-form empirical relations to predict the static pull-in parameters of electrostatically actuated microcantilevers having linear width variation. Microsyst Technol 17(1):35–45CrossRef
Zurück zum Zitat Katsikadelis J, Tsiatas G (2004) Non-linear dynamic analysis of beams with variable stiffness. J Sound Vib 270(4):847–863CrossRef Katsikadelis J, Tsiatas G (2004) Non-linear dynamic analysis of beams with variable stiffness. J Sound Vib 270(4):847–863CrossRef
Zurück zum Zitat Kong S et al (2009) Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int J Eng Sci 47(4):487–498CrossRefMATH Kong S et al (2009) Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int J Eng Sci 47(4):487–498CrossRefMATH
Zurück zum Zitat König E-R, Wachutka G (2004) Multi-parameter homotopy for the numerical analysis of MEMS. Sens Actuators A 110(1):39–51CrossRef König E-R, Wachutka G (2004) Multi-parameter homotopy for the numerical analysis of MEMS. Sens Actuators A 110(1):39–51CrossRef
Zurück zum Zitat Lam D et al (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508CrossRefMATH Lam D et al (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508CrossRefMATH
Zurück zum Zitat Li X-F, Wang B-L, Lee KY (2010) Size effect in the mechanical response of nanobeams. J Adv Res Mech Eng 1(1):4–16 Li X-F, Wang B-L, Lee KY (2010) Size effect in the mechanical response of nanobeams. J Adv Res Mech Eng 1(1):4–16
Zurück zum Zitat Lim C (2009) Equilibrium and static deflection for bending of a nonlocal nanobeam. Adv Vib Eng 8(4):277–300 Lim C (2009) Equilibrium and static deflection for bending of a nonlocal nanobeam. Adv Vib Eng 8(4):277–300
Zurück zum Zitat Lim C (2010) Is a nanorod (or nanotube) with a lower Young’s modulus stiffer? Is not Young’s modulus a stiffness indicator? Sci China Phys Mech Astron 53(4):712–724CrossRef Lim C (2010) Is a nanorod (or nanotube) with a lower Young’s modulus stiffer? Is not Young’s modulus a stiffness indicator? Sci China Phys Mech Astron 53(4):712–724CrossRef
Zurück zum Zitat Lim C, Yang Y (2010) New predictions of size-dependent nanoscale based on nonlocal elasticity for wave propagation in carbon nanotubes. J Comput Theor Nanosci 7(6):988–995CrossRef Lim C, Yang Y (2010) New predictions of size-dependent nanoscale based on nonlocal elasticity for wave propagation in carbon nanotubes. J Comput Theor Nanosci 7(6):988–995CrossRef
Zurück zum Zitat Lim C, Li C, Yu J (2009) The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams. Interact Multiscale Mech 2(3):223–233CrossRef Lim C, Li C, Yu J (2009) The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams. Interact Multiscale Mech 2(3):223–233CrossRef
Zurück zum Zitat Lim C, Li C, Yu J-L (2010) Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach. Acta Mech Sin 26(5):755–765CrossRefMATHMathSciNet Lim C, Li C, Yu J-L (2010) Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach. Acta Mech Sin 26(5):755–765CrossRefMATHMathSciNet
Zurück zum Zitat Lixian Z, Tongxi Y, Yapu Z (2004) Numerical analysis of theoretical model of the RF MEMS switches. Acta Mech Sin 20(2):178–184CrossRef Lixian Z, Tongxi Y, Yapu Z (2004) Numerical analysis of theoretical model of the RF MEMS switches. Acta Mech Sin 20(2):178–184CrossRef
Zurück zum Zitat Moeenfard H, Darvishian A, Ahmaidan MT (2012) Static behavior of nano/micromirrors under the effect of Casimir force, an analytical approach. J Mech Sci Technol 26(2):537–543CrossRef Moeenfard H, Darvishian A, Ahmaidan MT (2012) Static behavior of nano/micromirrors under the effect of Casimir force, an analytical approach. J Mech Sci Technol 26(2):537–543CrossRef
Zurück zum Zitat Namazu T, Isono Y, Tanaka T (2000) Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. J Microelectromech Syst 9(4):450–459CrossRef Namazu T, Isono Y, Tanaka T (2000) Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. J Microelectromech Syst 9(4):450–459CrossRef
Zurück zum Zitat Osterberg PM (1995) Electrostatically actuated microelectromechancial test structures for material property measurement. MIT, Cambridge Osterberg PM (1995) Electrostatically actuated microelectromechancial test structures for material property measurement. MIT, Cambridge
Zurück zum Zitat Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6(2):107–118CrossRef Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6(2):107–118CrossRef
Zurück zum Zitat Pamidighantam S et al (2002) Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions. J Micromech Microeng 12(4):458CrossRef Pamidighantam S et al (2002) Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions. J Micromech Microeng 12(4):458CrossRef
Zurück zum Zitat Patil S, Chu V, Conde JP (2008) Performance of thin film silicon MEMS on flexible plastic substrates. Sens Actuators A 144(1):201–206CrossRef Patil S, Chu V, Conde JP (2008) Performance of thin film silicon MEMS on flexible plastic substrates. Sens Actuators A 144(1):201–206CrossRef
Zurück zum Zitat Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41(3):305–312CrossRef Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41(3):305–312CrossRef
Zurück zum Zitat Ramezani A, Alasty A, Akbari J (2008) Analytical investigation and numerical verification of Casimir effect on electrostatic nano-cantilevers. Microsyst Technol 14(2):145–157CrossRef Ramezani A, Alasty A, Akbari J (2008) Analytical investigation and numerical verification of Casimir effect on electrostatic nano-cantilevers. Microsyst Technol 14(2):145–157CrossRef
Zurück zum Zitat Rocha LA et al (2011) Auto-calibration of capacitive MEMS accelerometers based on pull-in voltage. Microsyst Technol 17(3):429–436CrossRef Rocha LA et al (2011) Auto-calibration of capacitive MEMS accelerometers based on pull-in voltage. Microsyst Technol 17(3):429–436CrossRef
Zurück zum Zitat Sharma A, George P (2008) A simple method for calculation of the pull-in voltage and touch-point pressure for the small deflection of square diaphragm in MEMS. Sens Actuators A 141(2):376–382CrossRef Sharma A, George P (2008) A simple method for calculation of the pull-in voltage and touch-point pressure for the small deflection of square diaphragm in MEMS. Sens Actuators A 141(2):376–382CrossRef
Zurück zum Zitat Stölken J, Evans A (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46(14):5109–5115CrossRef Stölken J, Evans A (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46(14):5109–5115CrossRef
Zurück zum Zitat Tang C, Alici G (2011a) Evaluation of length-scale effects for mechanical behaviour of micro-and nanocantilevers: I. Experimental determination of length-scale factors. J Phys D Appl Phys 44(33):335501CrossRef Tang C, Alici G (2011a) Evaluation of length-scale effects for mechanical behaviour of micro-and nanocantilevers: I. Experimental determination of length-scale factors. J Phys D Appl Phys 44(33):335501CrossRef
Zurück zum Zitat Tang C, Alici G (2011b) Evaluation of length-scale effects for mechanical behaviour of micro-and nanocantilevers: II. Experimental verification of deflection models using atomic force microscopy. J Phys D Appl Phys 44(33):335502CrossRef Tang C, Alici G (2011b) Evaluation of length-scale effects for mechanical behaviour of micro-and nanocantilevers: II. Experimental verification of deflection models using atomic force microscopy. J Phys D Appl Phys 44(33):335502CrossRef
Zurück zum Zitat Tilmans HA, Legtenberg R (1994) Electrostatically driven vacuum-encapsulated polysilicon resonators: part II. Theory and performance. Sens Actuators A 45(1):67–84CrossRef Tilmans HA, Legtenberg R (1994) Electrostatically driven vacuum-encapsulated polysilicon resonators: part II. Theory and performance. Sens Actuators A 45(1):67–84CrossRef
Zurück zum Zitat Wang Q, Varadan V (2006) Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater Struct 15(2):659CrossRef Wang Q, Varadan V (2006) Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater Struct 15(2):659CrossRef
Zurück zum Zitat Wang Q, Varadan V, Quek S (2006) Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models. Phys Lett A 357(2):130–135CrossRef Wang Q, Varadan V, Quek S (2006) Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models. Phys Lett A 357(2):130–135CrossRef
Metadaten
Titel
Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams
verfasst von
Ehsan Maani Miandoab
Aghil Yousefi-Koma
Hossein Nejat Pishkenari
Publikationsdatum
01.02.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 2/2015
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-014-2110-2

Weitere Artikel der Ausgabe 2/2015

Microsystem Technologies 2/2015 Zur Ausgabe

Neuer Inhalt