Skip to main content
Erschienen in: Neural Processing Letters 2/2019

12.09.2018

Nonnegative Constrained Graph Based Canonical Correlation Analysis for Multi-view Feature Learning

verfasst von: Huibin Tan, Xiang Zhang, Long Lan, Xuhui Huang, Zhigang Luo

Erschienen in: Neural Processing Letters | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Understanding and analyzing multi-view data is a fundamental research topic of feature learning for a wide range of practical applications such as image classification. Canonical correlation analysis (CCA) is a popular unsupervised method of analyzing multi-view data, which captures common subspace of two groups of variable sets by maximizing the correlations between them. However, traditional CCA ignores the underlying geometric structure within dataset, which shows great power in describing data distribution, and thus fails in some tasks such as classification. To handle this limitation, this paper proposes an improved CCA variant of Nonnegative Constrained Graph regularized CCA (NCGCCA). Specifically, we improve CCA to NCGCCA with the following two contributions. Firstly, we develop a nonnegative constrained graph based self-representation to explore the underlying group-wise structure within dataset. Secondly, based on the proposed informative representation, we offer a graph embedding schema to incorporate the underlying structure into CCA. Experiments of image classification on four face datasets including Yale, ORL, UMIST, and YaleB demonstrate the efficacy of NCGCCA compared with existing baseline CCA methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wu F, Jing XY, Yue D (2017) Multi-view discriminant dictionary learning via learning view-specific and shared structured dictionaries for image classification. Neural Process Lett 45(2):649–666CrossRef Wu F, Jing XY, Yue D (2017) Multi-view discriminant dictionary learning via learning view-specific and shared structured dictionaries for image classification. Neural Process Lett 45(2):649–666CrossRef
2.
Zurück zum Zitat Wan J, Wang H, Yang M (2017) Cost sensitive semi-supervised canonical correlation analysis for multi-view dimensionality reduction. Neural Process Lett 45(2):411–430CrossRef Wan J, Wang H, Yang M (2017) Cost sensitive semi-supervised canonical correlation analysis for multi-view dimensionality reduction. Neural Process Lett 45(2):411–430CrossRef
3.
Zurück zum Zitat Sun S, Zhang Q (2011) Multiple-view multiple-learner semi-supervised learning. Neural Process Lett 34(3):229–240CrossRef Sun S, Zhang Q (2011) Multiple-view multiple-learner semi-supervised learning. Neural Process Lett 34(3):229–240CrossRef
4.
Zurück zum Zitat Wang F, Zhang D (2013) A new locality-preserving canonical correlation analysis algorithm for multi-view dimensionality reduction. Neural Process Lett 37(2):135–146MathSciNetCrossRef Wang F, Zhang D (2013) A new locality-preserving canonical correlation analysis algorithm for multi-view dimensionality reduction. Neural Process Lett 37(2):135–146MathSciNetCrossRef
5.
Zurück zum Zitat Hotelling H (1936) Relations between two sets of variates. Biometrika 28(3/4):321–377CrossRef Hotelling H (1936) Relations between two sets of variates. Biometrika 28(3/4):321–377CrossRef
6.
Zurück zum Zitat Yuan YH, Sun QS, Ge HW (2014) Fractional-order embedding canonical correlation analysis and its applications to multi-view dimensionality reduction and recognition. Pattern Recognit 47(3):1411–1424CrossRef Yuan YH, Sun QS, Ge HW (2014) Fractional-order embedding canonical correlation analysis and its applications to multi-view dimensionality reduction and recognition. Pattern Recognit 47(3):1411–1424CrossRef
7.
Zurück zum Zitat Farquhar J, Hardoon D, Meng H, Shawe-taylor JS, Szedmak S (2006) Two view learning: Svm-2k, theory and practice. In: Advances in neural information processing systems, pp 355–362 Farquhar J, Hardoon D, Meng H, Shawe-taylor JS, Szedmak S (2006) Two view learning: Svm-2k, theory and practice. In: Advances in neural information processing systems, pp 355–362
8.
Zurück zum Zitat Yang J, Sun QS (2017) A novel generalized fuzzy canonical correlation analysis framework for feature fusion and recognition. Neural Process Lett 46(2):521–536CrossRef Yang J, Sun QS (2017) A novel generalized fuzzy canonical correlation analysis framework for feature fusion and recognition. Neural Process Lett 46(2):521–536CrossRef
9.
Zurück zum Zitat Kakade SM, Foster DP (2007) Multi-view regression via canonical correlation analysis. In: International conference on computational learning theory. Springer, pp 82–96 Kakade SM, Foster DP (2007) Multi-view regression via canonical correlation analysis. In: International conference on computational learning theory. Springer, pp 82–96
10.
Zurück zum Zitat Blaschko MB, Lampert CH (2008) Correlational spectral clustering. In: Computer vision and pattern recognition. IEEE, pp 1–8 Blaschko MB, Lampert CH (2008) Correlational spectral clustering. In: Computer vision and pattern recognition. IEEE, pp 1–8
11.
Zurück zum Zitat Chaudhuri K, Kakade SM, Livescu K, Sridharan K (2009) Multi-view clustering via canonical correlation analysis. In: Machine learning. ACM, pp 129–136 Chaudhuri K, Kakade SM, Livescu K, Sridharan K (2009) Multi-view clustering via canonical correlation analysis. In: Machine learning. ACM, pp 129–136
12.
Zurück zum Zitat Lai PL, Fyfe C (2000) Kernel and nonlinear canonical correlation analysis. Int J Neural Syst 10(05):365–377CrossRef Lai PL, Fyfe C (2000) Kernel and nonlinear canonical correlation analysis. Int J Neural Syst 10(05):365–377CrossRef
13.
Zurück zum Zitat Luo Y, Tao D, Ramamohanarao K, Xu C, Wen Y (2015) Tensor canonical correlation analysis for multi-view dimension reduction. IEEE Trans Knowl Data Eng 27(11):3111–3124CrossRef Luo Y, Tao D, Ramamohanarao K, Xu C, Wen Y (2015) Tensor canonical correlation analysis for multi-view dimension reduction. IEEE Trans Knowl Data Eng 27(11):3111–3124CrossRef
14.
Zurück zum Zitat Wang SJ, Yan WJ, Sun T, Zhao G, Fu X (2016) Sparse tensor canonical correlation analysis for micro-expression recognition. Neurocomputing 214:218–232CrossRef Wang SJ, Yan WJ, Sun T, Zhao G, Fu X (2016) Sparse tensor canonical correlation analysis for micro-expression recognition. Neurocomputing 214:218–232CrossRef
15.
Zurück zum Zitat Andrew G, Arora R, Bilmes J, Livescu K (2013) Deep canonical correlation analysis. In: International conference on machine learning, pp 1247–1255 Andrew G, Arora R, Bilmes J, Livescu K (2013) Deep canonical correlation analysis. In: International conference on machine learning, pp 1247–1255
16.
Zurück zum Zitat Srivastava N, Salakhutdinov RR (2012) Multimodal learning with deep boltzmann machines. In: Advances in neural information processing systems, pp 2222–2230 Srivastava N, Salakhutdinov RR (2012) Multimodal learning with deep boltzmann machines. In: Advances in neural information processing systems, pp 2222–2230
17.
Zurück zum Zitat Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY (2011) Multimodal deep learning. In: International conference on machine learning, pp 689–696 Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY (2011) Multimodal deep learning. In: International conference on machine learning, pp 689–696
18.
Zurück zum Zitat Liu B, Jing L, Yu J, Li J (2016) Robust graph learning via constrained elastic-net regularization. Neurocomputing 171:299–312CrossRef Liu B, Jing L, Yu J, Li J (2016) Robust graph learning via constrained elastic-net regularization. Neurocomputing 171:299–312CrossRef
19.
Zurück zum Zitat Hu R, Zhu X, Cheng D, He W, Yan Y, Song J, Zhang S (2017) Graph self-representation method for unsupervised feature selection. Neurocomputing 220:130–137CrossRef Hu R, Zhu X, Cheng D, He W, Yan Y, Song J, Zhang S (2017) Graph self-representation method for unsupervised feature selection. Neurocomputing 220:130–137CrossRef
20.
Zurück zum Zitat Peng C, Kang Z, Cheng Q (2017) Integrating feature and graph learning with low-rank representation. Neurocomputing 249:106–116CrossRef Peng C, Kang Z, Cheng Q (2017) Integrating feature and graph learning with low-rank representation. Neurocomputing 249:106–116CrossRef
21.
Zurück zum Zitat Li S, Zeng C, Fu Y, Liu S (2017) Optimizing multi-graph learning based salient object detection. Signal Process Image Commun 55:93–105CrossRef Li S, Zeng C, Fu Y, Liu S (2017) Optimizing multi-graph learning based salient object detection. Signal Process Image Commun 55:93–105CrossRef
22.
Zurück zum Zitat Lou S, Zhao X, Chuang Y, Yu H, Zhang S (2016) Graph regularized sparsity discriminant analysis for face recognition. Neurocomputing 173:290–297CrossRef Lou S, Zhao X, Chuang Y, Yu H, Zhang S (2016) Graph regularized sparsity discriminant analysis for face recognition. Neurocomputing 173:290–297CrossRef
23.
Zurück zum Zitat Peng Y, Wang S, Long X, Lu BL (2015) Discriminative graph regularized extreme learning machine and its application to face recognition. Neurocomputing 149:340–353CrossRef Peng Y, Wang S, Long X, Lu BL (2015) Discriminative graph regularized extreme learning machine and its application to face recognition. Neurocomputing 149:340–353CrossRef
24.
Zurück zum Zitat Sun T, Chen S (2007) Locality preserving cca with applications to data visualization and pose estimation. Image Vis Comput 25(5):531–543CrossRef Sun T, Chen S (2007) Locality preserving cca with applications to data visualization and pose estimation. Image Vis Comput 25(5):531–543CrossRef
25.
Zurück zum Zitat Peng Y, Zhang D, Zhang J (2010) A new canonical correlation analysis algorithm with local discrimination. Neural Process Lett 31(1):1–15CrossRef Peng Y, Zhang D, Zhang J (2010) A new canonical correlation analysis algorithm with local discrimination. Neural Process Lett 31(1):1–15CrossRef
26.
Zurück zum Zitat Zhang X, Guan N, Luo Z, Lan L (2012) Discriminative locality preserving canonical correlation analysis. In: Chinese conference on pattern recognition. Springer, pp 341–349 Zhang X, Guan N, Luo Z, Lan L (2012) Discriminative locality preserving canonical correlation analysis. In: Chinese conference on pattern recognition. Springer, pp 341–349
27.
Zurück zum Zitat Guan N, Zhang X, Luo Z, Lan L (2012) Sparse representation based discriminative canonical correlation analysis for face recognition. In: Machine learning and applications. IEEE, vol 1, pp 51–56 Guan N, Zhang X, Luo Z, Lan L (2012) Sparse representation based discriminative canonical correlation analysis for face recognition. In: Machine learning and applications. IEEE, vol 1, pp 51–56
28.
Zurück zum Zitat Zu C, Zhang D (2016) Canonical sparse cross-view correlation analysis. Neurocomputing 191:263–272CrossRef Zu C, Zhang D (2016) Canonical sparse cross-view correlation analysis. Neurocomputing 191:263–272CrossRef
29.
Zurück zum Zitat Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRef Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227CrossRef
30.
Zurück zum Zitat Yan S, Xu D, Zhang B, Zhang HJ, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51CrossRef Yan S, Xu D, Zhang B, Zhang HJ, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51CrossRef
31.
Zurück zum Zitat He X, Niyogi P (2003) Locality preserving projections. In: Neural information processing systems, vol 16 He X, Niyogi P (2003) Locality preserving projections. In: Neural information processing systems, vol 16
32.
Zurück zum Zitat Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recognit 43(1):331–341CrossRef Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recognit 43(1):331–341CrossRef
33.
Zurück zum Zitat Gui J, Sun Z, Jia W, Hu R, Lei Y, Ji S (2012) Discriminant sparse neighborhood preserving embedding for face recognition. Pattern Recognit 45(8):2884–2893CrossRef Gui J, Sun Z, Jia W, Hu R, Lei Y, Ji S (2012) Discriminant sparse neighborhood preserving embedding for face recognition. Pattern Recognit 45(8):2884–2893CrossRef
34.
Zurück zum Zitat Lu CY, Min H, Gui J, Zhu L, Lei YK (2013) Face recognition via weighted sparse representation. J Vis Commun Image Represent 24(2):111–116CrossRef Lu CY, Min H, Gui J, Zhu L, Lei YK (2013) Face recognition via weighted sparse representation. J Vis Commun Image Represent 24(2):111–116CrossRef
35.
Zurück zum Zitat Cheng B, Yang J, Yan S, Fu Y, Huang TS (2010) Learning with \({{l}_{1}}\)-graph for image analysis. IEEE Trans Image Process 19(4):858–866 Cheng B, Yang J, Yan S, Fu Y, Huang TS (2010) Learning with \({{l}_{1}}\)-graph for image analysis. IEEE Trans Image Process 19(4):858–866
36.
Zurück zum Zitat Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRef Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRef
37.
Zurück zum Zitat Wang J, Wang F, Zhang C, Shen HC, Quan L (2009) Linear neighborhood propagation and its applications. IEEE Trans Pattern Anal Mach Intell 31(9):1600–1615CrossRef Wang J, Wang F, Zhang C, Shen HC, Quan L (2009) Linear neighborhood propagation and its applications. IEEE Trans Pattern Anal Mach Intell 31(9):1600–1615CrossRef
38.
Zurück zum Zitat He R, Zheng WS, Hu BG, Kong XW (2011) Nonnegative sparse coding for discriminative semi-supervised learning. In: Computer vision and pattern recognition. IEEE, pp 2849–2856 He R, Zheng WS, Hu BG, Kong XW (2011) Nonnegative sparse coding for discriminative semi-supervised learning. In: Computer vision and pattern recognition. IEEE, pp 2849–2856
39.
Zurück zum Zitat Vo N, Moran B, Challa S (2009) Nonnegative-least-square classifier for face recognition. In: International symposium on neural networks. Springer, pp 449–456 Vo N, Moran B, Challa S (2009) Nonnegative-least-square classifier for face recognition. In: International symposium on neural networks. Springer, pp 449–456
40.
Zurück zum Zitat Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. In: International conference on machine learning, pp 663–670 Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. In: International conference on machine learning, pp 663–670
41.
Zurück zum Zitat Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720CrossRef Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720CrossRef
42.
Zurück zum Zitat Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: Applications of computer vision. IEEE, pp 138–142 Samaria FS, Harter AC (1994) Parameterisation of a stochastic model for human face identification. In: Applications of computer vision. IEEE, pp 138–142
43.
Zurück zum Zitat Graham DB, Allinson NM (1998) Characterising virtual eigensignatures for general purpose face recognition. In: Face recognition. Springer, pp 446–456 Graham DB, Allinson NM (1998) Characterising virtual eigensignatures for general purpose face recognition. In: Face recognition. Springer, pp 446–456
44.
Zurück zum Zitat Lee KC, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698CrossRef Lee KC, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698CrossRef
45.
Zurück zum Zitat Hoegaerts L, Suykens JA, Vandewalle J, De Moor B (2005) Subset based least squares subspace regression in rkhs. Neurocomputing 63:293–323CrossRef Hoegaerts L, Suykens JA, Vandewalle J, De Moor B (2005) Subset based least squares subspace regression in rkhs. Neurocomputing 63:293–323CrossRef
46.
Zurück zum Zitat Lu X, Li X (2014) Group sparse reconstruction for image segmentation. Neurocomputing 136:41–48CrossRef Lu X, Li X (2014) Group sparse reconstruction for image segmentation. Neurocomputing 136:41–48CrossRef
47.
Zurück zum Zitat Elad M, Figueiredo MA, Ma Y (2010) On the role of sparse and redundant representations in image processing. Proc IEEE 98(6):972–982CrossRef Elad M, Figueiredo MA, Ma Y (2010) On the role of sparse and redundant representations in image processing. Proc IEEE 98(6):972–982CrossRef
48.
Zurück zum Zitat Bruckstein AM, Donoho DL, Elad M (2009) From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev 51(1):34–81MathSciNetCrossRef Bruckstein AM, Donoho DL, Elad M (2009) From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev 51(1):34–81MathSciNetCrossRef
49.
Zurück zum Zitat Xu Y, Zhang D, Yang J, Yang JY (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 21(9):1255–1262MathSciNetCrossRef Xu Y, Zhang D, Yang J, Yang JY (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 21(9):1255–1262MathSciNetCrossRef
50.
Zurück zum Zitat Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044CrossRef Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044CrossRef
51.
Zurück zum Zitat Guan N, Tao D, Luo Z, Yuan B (2011) Non-negative patch alignment framework. IEEE Trans Neural Netw 22(8):1218–1230CrossRef Guan N, Tao D, Luo Z, Yuan B (2011) Non-negative patch alignment framework. IEEE Trans Neural Netw 22(8):1218–1230CrossRef
52.
Zurück zum Zitat Fazel M (2002) Matrix rank minimization with applications. PhD thesis, Stanford University Fazel M (2002) Matrix rank minimization with applications. PhD thesis, Stanford University
Metadaten
Titel
Nonnegative Constrained Graph Based Canonical Correlation Analysis for Multi-view Feature Learning
verfasst von
Huibin Tan
Xiang Zhang
Long Lan
Xuhui Huang
Zhigang Luo
Publikationsdatum
12.09.2018
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 2/2019
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-018-9904-7

Weitere Artikel der Ausgabe 2/2019

Neural Processing Letters 2/2019 Zur Ausgabe

Neuer Inhalt