Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 4/2022

28.03.2022 | Original Paper

Normal Indentation of Rock Specimens with a Blunt Tool: Role of Specimen Size and Indenter Geometry

verfasst von: Hongwei Yang, Jörg Renner, Lukas Brackmann, Arne Röttger

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Indentation testing has been widely used in laboratory environments to investigate the processes leading to rock fragmentation in drilling, mechanized tunneling, and mining. Rock specimens for laboratory testing are limited to finite size, potentially causing size effects that have to be accounted for when transferring results to in situ applications. We present an integrated experimental and theoretical investigation of the specimen size effect in indentation testing (a) to address the limited understanding of its causes and the lack of tools to analyze tests on variable specimen sizes and (b) to identify to what extent an indenter mimicking the shape of a cutter on a tunneling machine can be approximated by a conventional indenter geometry. We performed indentation tests on cylindrical specimens of a porous sandstone with aspect ratios (diameter/height) ranging from 0.3 to 1.7, using a blunt-truncated indenter and monitoring the fracturing process by the acoustic emission technique. A damage zone, enclosing a zone of crushed grains immediately below the indenter tip, forms and grows due to tool penetration. Eventually, all specimens failed as a result of the propagation of a sub-vertical fracture, initiated close to peak indentation pressure. Peak force, its corresponding penetration depth, and peak indentation pressure increase with specimen size, more significantly with specimen diameter than with height. We developed a semi-analytical model based on cavity-expansion theory and linear elastic fracture mechanics for the formation of the damage zone and the nucleation and propagation of the macroscopic vertical fracture, respectively, whose predictions are in good agreement with our experimental data. The observed increases of peak indentation pressure with specimen size can be explained by the effect of the free surfaces on damage zone growth rather than on fracture propagation. The model permits evaluating the specimen size effect through the ratio between two geometrical parameters, specimen diameter and tip width of the truncated indenter, which has to be larger than around 102 for the size effect to be insignificant. The model permits upscaling of experimental results to in situ conditions based on geometrical indenter parameters and commonly used material parameters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alehossein H, Detournay E, Huang H (2000) An analytical model for the indentation of rocks by blunt tools. Rock Mech Rock Eng 33:267–284CrossRef Alehossein H, Detournay E, Huang H (2000) An analytical model for the indentation of rocks by blunt tools. Rock Mech Rock Eng 33:267–284CrossRef
Zurück zum Zitat Baud P, Wong T, Zhu W (2014) Effects of porosity and crack density on the compressive strength of rocks. Int J Rock Mech Min Sci 67:202–211CrossRef Baud P, Wong T, Zhu W (2014) Effects of porosity and crack density on the compressive strength of rocks. Int J Rock Mech Min Sci 67:202–211CrossRef
Zurück zum Zitat Bažant P (1984) Size effect in blunt fracture: concrete, rock, metal. J Eng Mech 110:518–535CrossRef Bažant P (1984) Size effect in blunt fracture: concrete, rock, metal. J Eng Mech 110:518–535CrossRef
Zurück zum Zitat Bazant ZP, Pfeiffer PA (1987) Determination of fracture energy from size effect and brittleness number. ACI Mater J 84:463 Bazant ZP, Pfeiffer PA (1987) Determination of fracture energy from size effect and brittleness number. ACI Mater J 84:463
Zurück zum Zitat Brace WF (1960) Behavior of rock salt, limestone, and anhydrite during indentation. J Geophys Res 1896–1977(65):1773–1788CrossRef Brace WF (1960) Behavior of rock salt, limestone, and anhydrite during indentation. J Geophys Res 1896–1977(65):1773–1788CrossRef
Zurück zum Zitat Chen LH, Labuz JF (2006) Indentation of rock by wedge-shaped tools. Int J Rock Mech Min Sci 43:1023–1033CrossRef Chen LH, Labuz JF (2006) Indentation of rock by wedge-shaped tools. Int J Rock Mech Min Sci 43:1023–1033CrossRef
Zurück zum Zitat Chen LH, Huang KC, Chen YC (2011) Acoustic emission at wedge indentation fracture in quasi-brittle materials. J Mech 25:213–223CrossRef Chen LH, Huang KC, Chen YC (2011) Acoustic emission at wedge indentation fracture in quasi-brittle materials. J Mech 25:213–223CrossRef
Zurück zum Zitat Cheng Y, Yang H-W (2019) Exact solution for drained spherical cavity expansion in saturated soils of finite radial extent. IJNAM 43:1594–1611 Cheng Y, Yang H-W (2019) Exact solution for drained spherical cavity expansion in saturated soils of finite radial extent. IJNAM 43:1594–1611
Zurück zum Zitat Cheng Y, Yang H-W, Sun DA (2018) Cavity expansion in unsaturated soils of finite radial extent. Comput Geotech 102:216–228CrossRef Cheng Y, Yang H-W, Sun DA (2018) Cavity expansion in unsaturated soils of finite radial extent. Comput Geotech 102:216–228CrossRef
Zurück zum Zitat Collins I, Stimpson J (1994) Similarity solutions for drained and undrained cavity expansions in soils. Geotechnique 44:21–34CrossRef Collins I, Stimpson J (1994) Similarity solutions for drained and undrained cavity expansions in soils. Geotechnique 44:21–34CrossRef
Zurück zum Zitat Gao XL, Jing XN, Subhash G (2006) Two new expanding cavity models for indentation deformations of elastic strain-hardening materials. IJSS 43:2193–2208 Gao XL, Jing XN, Subhash G (2006) Two new expanding cavity models for indentation deformations of elastic strain-hardening materials. IJSS 43:2193–2208
Zurück zum Zitat Harris DO, Bell RL (1977) The measurement and significance of energy in acoustic-emission testing. ExM 17:347–353 Harris DO, Bell RL (1977) The measurement and significance of energy in acoustic-emission testing. ExM 17:347–353
Zurück zum Zitat He X, Xu C (2016) Specific energy as an index to identify the critical failure mode transition depth in rock cutting. Rock Mech Rock Eng 49:1461–1478CrossRef He X, Xu C (2016) Specific energy as an index to identify the critical failure mode transition depth in rock cutting. Rock Mech Rock Eng 49:1461–1478CrossRef
Zurück zum Zitat Huang H, Detournay E (2008) Intrinsic length scales in tool-rock interaction. Int J Geomech 8:39–44CrossRef Huang H, Detournay E (2008) Intrinsic length scales in tool-rock interaction. Int J Geomech 8:39–44CrossRef
Zurück zum Zitat Huang H, Detournay E (2013) Discrete element modeling of tool-rock interaction II: rock indentation. IJNAM 37:1930–1947 Huang H, Detournay E (2013) Discrete element modeling of tool-rock interaction II: rock indentation. IJNAM 37:1930–1947
Zurück zum Zitat Huang H, Damjanac B, Detournay E (1998) Normal wedge indentation in rocks with lateral confinement. Rock Mech Rock Eng 31:81–94CrossRef Huang H, Damjanac B, Detournay E (1998) Normal wedge indentation in rocks with lateral confinement. Rock Mech Rock Eng 31:81–94CrossRef
Zurück zum Zitat Huang K, Deng P, Liu Q, Pan Y, Liu Q, Peng X (2018) Experimental study on rock indentation using infrared thermography and acoustic emission techniques. JGE 15:1864–1877 Huang K, Deng P, Liu Q, Pan Y, Liu Q, Peng X (2018) Experimental study on rock indentation using infrared thermography and acoustic emission techniques. JGE 15:1864–1877
Zurück zum Zitat Huang H (1999) Discrete element modeling of tool-rock interaction, University of Minnesota Huang H (1999) Discrete element modeling of tool-rock interaction, University of Minnesota
Zurück zum Zitat ISRM (2007) The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006, ISRM Turkish National Group and the ISRM. ISRM (2007) The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006, ISRM Turkish National Group and the ISRM.
Zurück zum Zitat Johnson KL (1970) The correlation of indentation experiments. J Mech Phys Solids 18:115–126CrossRef Johnson KL (1970) The correlation of indentation experiments. J Mech Phys Solids 18:115–126CrossRef
Zurück zum Zitat Johnson KL, Johnson KL (1987) Contact mechanics. Cambridge University Press, Cambridge Johnson KL, Johnson KL (1987) Contact mechanics. Cambridge University Press, Cambridge
Zurück zum Zitat Klein E, Reuschlé T (2003) A model for the mechanical behaviour of Bentheim Sandstone in the Brittle Regime. PApGe 160:833–849 Klein E, Reuschlé T (2003) A model for the mechanical behaviour of Bentheim Sandstone in the Brittle Regime. PApGe 160:833–849
Zurück zum Zitat Klein E, Baud P, Reuschlé T, Wong T (2001) Mechanical behaviour and failure mode of Bentheim sandstone under triaxial compression. Phys Chem Earth Part A 26:21–25CrossRef Klein E, Baud P, Reuschlé T, Wong T (2001) Mechanical behaviour and failure mode of Bentheim sandstone under triaxial compression. Phys Chem Earth Part A 26:21–25CrossRef
Zurück zum Zitat Kong X, Liu Q, Lu H (2021) Effects of rock specimen size on mechanical properties in laboratory testing. J Geotech Geoenviron 147:04021013CrossRef Kong X, Liu Q, Lu H (2021) Effects of rock specimen size on mechanical properties in laboratory testing. J Geotech Geoenviron 147:04021013CrossRef
Zurück zum Zitat Kou S-Q, Huang Y, Tan X-C, Lindqvist P-A (1998) Identification of the governing parameters related to rock indentation depth by using similarity analysis. Eng Geol 49:261–269CrossRef Kou S-Q, Huang Y, Tan X-C, Lindqvist P-A (1998) Identification of the governing parameters related to rock indentation depth by using similarity analysis. Eng Geol 49:261–269CrossRef
Zurück zum Zitat Krause M (2018) Experimental investigation of propagation mechanisms of stimulation-induced fractures under in-situ conditions. Ph.D Doctoral thesis, Ruhr-Universität Bochum Krause M (2018) Experimental investigation of propagation mechanisms of stimulation-induced fractures under in-situ conditions. Ph.D Doctoral thesis, Ruhr-Universität Bochum
Zurück zum Zitat Landis EN, Baillon L (2002) Experiments to relate acoustic emission energy to fracture energy of concrete. J Eng Mech 128:698–702CrossRef Landis EN, Baillon L (2002) Experiments to relate acoustic emission energy to fracture energy of concrete. J Eng Mech 128:698–702CrossRef
Zurück zum Zitat Lawn BR, Evans AG (1977) A model for crack initiation in elastic/plastic indentation fields. JMatS 12:2195–2199 Lawn BR, Evans AG (1977) A model for crack initiation in elastic/plastic indentation fields. JMatS 12:2195–2199
Zurück zum Zitat Lawn BR, Marshall DB (1979) Hardness, toughness, and brittleness: an indentation analysis. J Am Ceram Soc 62:347–350CrossRef Lawn BR, Marshall DB (1979) Hardness, toughness, and brittleness: an indentation analysis. J Am Ceram Soc 62:347–350CrossRef
Zurück zum Zitat Lawn B, Wilshaw TR (1993) Fracture of brittle solids. Cambridge University Press, CambridgeCrossRef Lawn B, Wilshaw TR (1993) Fracture of brittle solids. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Li X, Li H, Liu Y, Zhou Q, Xia X (2016) Numerical simulation of rock fragmentation mechanisms subject to wedge penetration for TBMs. Tunnel Undergr Space Technol 53:96–108CrossRef Li X, Li H, Liu Y, Zhou Q, Xia X (2016) Numerical simulation of rock fragmentation mechanisms subject to wedge penetration for TBMs. Tunnel Undergr Space Technol 53:96–108CrossRef
Zurück zum Zitat Lindqvist P-A, Hai-Hui L (1983) Behaviour of the crushed zone in rock indentation. Rock Mech Rock Eng 16:199–207CrossRef Lindqvist P-A, Hai-Hui L (1983) Behaviour of the crushed zone in rock indentation. Rock Mech Rock Eng 16:199–207CrossRef
Zurück zum Zitat Liu J, Cao P, Han D (2016) Sequential indentation tests to investigate the influence of confining stress on rock breakage by tunnel boring machine cutter in a biaxial state. Rock Mech Rock Eng 49:1479–1495CrossRef Liu J, Cao P, Han D (2016) Sequential indentation tests to investigate the influence of confining stress on rock breakage by tunnel boring machine cutter in a biaxial state. Rock Mech Rock Eng 49:1479–1495CrossRef
Zurück zum Zitat Lockner DA (1995) Rock failure. Rock Phys Phase Relat 3:127–147 Lockner DA (1995) Rock failure. Rock Phys Phase Relat 3:127–147
Zurück zum Zitat Molenda, M, Stöckhert F, Brenne S, Alber M (2015) Acoustic emission monitoring of laboratory scale hydraulic fracturing experiments. 49th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association Molenda, M, Stöckhert F, Brenne S, Alber M (2015) Acoustic emission monitoring of laboratory scale hydraulic fracturing experiments. 49th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association
Zurück zum Zitat Narasimhan R (2004) Analysis of indentation of pressure sensitive plastic solids using the expanding cavity model. Mech Mater 36:633–645CrossRef Narasimhan R (2004) Analysis of indentation of pressure sensitive plastic solids using the expanding cavity model. Mech Mater 36:633–645CrossRef
Zurück zum Zitat Ouchterlony F (1988) Suggested methods for determining the fracture toughness of rock. Int Jo Rock Mech Mining Sci Geomech Abst 25:71–96 Ouchterlony F (1988) Suggested methods for determining the fracture toughness of rock. Int Jo Rock Mech Mining Sci Geomech Abst 25:71–96
Zurück zum Zitat Park Y, Pharr G (2004) Nanoindentation with spherical indenters: finite element studies of deformation in the elastic–plastic transition regime. Thin Solid Films 447:246–250CrossRef Park Y, Pharr G (2004) Nanoindentation with spherical indenters: finite element studies of deformation in the elastic–plastic transition regime. Thin Solid Films 447:246–250CrossRef
Zurück zum Zitat Pournaghiazar M, Russell AR, Khalili N (2013) Drained cavity expansions in soils of finite radial extent subjected to two boundary conditions. IJNAM 37:331–352 Pournaghiazar M, Russell AR, Khalili N (2013) Drained cavity expansions in soils of finite radial extent subjected to two boundary conditions. IJNAM 37:331–352
Zurück zum Zitat Puttick KE (1980) The correlation of fracture transitions. J Phys D Appl Phys 13:2249–2262CrossRef Puttick KE (1980) The correlation of fracture transitions. J Phys D Appl Phys 13:2249–2262CrossRef
Zurück zum Zitat Richard T (1999) Determination of strength from cutting tests. Master. University of Minnesota, Minneapolis Richard T (1999) Determination of strength from cutting tests. Master. University of Minnesota, Minneapolis
Zurück zum Zitat Roxborough FF, Phillips HR (1975) Rock excavation by disc cutter. Int J Rock Mech Mining Sci Geomech Abst 12:361–366CrossRef Roxborough FF, Phillips HR (1975) Rock excavation by disc cutter. Int J Rock Mech Mining Sci Geomech Abst 12:361–366CrossRef
Zurück zum Zitat Scholz T, Schneider G, Munoz-Saldana J, Swain M (2004) Fracture toughness from submicron derived indentation cracks. Appl Phys Lett 84:3055–3057CrossRef Scholz T, Schneider G, Munoz-Saldana J, Swain M (2004) Fracture toughness from submicron derived indentation cracks. Appl Phys Lett 84:3055–3057CrossRef
Zurück zum Zitat Sebastiani M, Johanns KE, Herbert EG, Pharr GM (2015) Measurement of fracture toughness by nanoindentation methods: Recent advances and future challenges. Curr Opin Solid State Mater Sci 19:324–333CrossRef Sebastiani M, Johanns KE, Herbert EG, Pharr GM (2015) Measurement of fracture toughness by nanoindentation methods: Recent advances and future challenges. Curr Opin Solid State Mater Sci 19:324–333CrossRef
Zurück zum Zitat Stoeckhert F, Molenda M, Brenne S, Alber M (2015) Fracture propagation in sandstone and slate–Laboratory experiments, acoustic emissions and fracture mechanics. J Rock Mech Geotech Eng 7:237–249CrossRef Stoeckhert F, Molenda M, Brenne S, Alber M (2015) Fracture propagation in sandstone and slate–Laboratory experiments, acoustic emissions and fracture mechanics. J Rock Mech Geotech Eng 7:237–249CrossRef
Zurück zum Zitat Szwedzicki T (1998) Indentation hardness testing of rock. Int J Rock Mech Min Sci 35:825–829CrossRef Szwedzicki T (1998) Indentation hardness testing of rock. Int J Rock Mech Min Sci 35:825–829CrossRef
Zurück zum Zitat Tabor, D (1984) Indentation Hardness and Its Measurement: Some Cautionary Comments. Microindentation Techniques in Materials Science and Engineering: A Symposium Sponsored by ASTM Committee E-4 on Metallography and by the International Metallographic Society, Philadelphia, PA, ASTM International: 129 Tabor, D (1984) Indentation Hardness and Its Measurement: Some Cautionary Comments. Microindentation Techniques in Materials Science and Engineering: A Symposium Sponsored by ASTM Committee E-4 on Metallography and by the International Metallographic Society, Philadelphia, PA, ASTM International: 129
Zurück zum Zitat Tada, H, Paris PC, Irwin GR (2000) The stress analysis of cracks handbook, The American Society of Mechanical Engieers, New YorkCrossRef Tada, H, Paris PC, Irwin GR (2000) The stress analysis of cracks handbook, The American Society of Mechanical Engieers, New YorkCrossRef
Zurück zum Zitat Teale R (1965) The concept of specific energy in rock drilling. Int J Rock Mech Mining Sci Geomech Abst 2:57–73CrossRef Teale R (1965) The concept of specific energy in rock drilling. Int J Rock Mech Mining Sci Geomech Abst 2:57–73CrossRef
Zurück zum Zitat Yadav S, Saldana C, Murthy TG (2015) Deformation field evolution in indentation of a porous brittle solid. IJSS 66:35–45 Yadav S, Saldana C, Murthy TG (2015) Deformation field evolution in indentation of a porous brittle solid. IJSS 66:35–45
Zurück zum Zitat Yang H, Russell AR (2015) Cavity expansion in unsaturated soils exhibiting hydraulic hysteresis considering three drainage conditions. IJNAM 39:1975–2016 Yang H, Russell AR (2015) Cavity expansion in unsaturated soils exhibiting hydraulic hysteresis considering three drainage conditions. IJNAM 39:1975–2016
Zurück zum Zitat Yin LJ, Gong QM, Ma HS, Zhao J, Zhao XB (2014) Use of indentation tests to study the influence of confining stress on rock fragmentation by a TBM cutter. Int J Rock Mech Min Sci 72:261–276CrossRef Yin LJ, Gong QM, Ma HS, Zhao J, Zhao XB (2014) Use of indentation tests to study the influence of confining stress on rock fragmentation by a TBM cutter. Int J Rock Mech Min Sci 72:261–276CrossRef
Zurück zum Zitat Zhou Y, Lin J-S (2013) On the critical failure mode transition depth for rock cutting. Int J Rock Mech Min Sci 62:131–137CrossRef Zhou Y, Lin J-S (2013) On the critical failure mode transition depth for rock cutting. Int J Rock Mech Min Sci 62:131–137CrossRef
Zurück zum Zitat Zhou Y, Lin J-S (2014) Modeling the ductile–brittle failure mode transition in rock cutting. Eng Fract Mech 127:135–147CrossRef Zhou Y, Lin J-S (2014) Modeling the ductile–brittle failure mode transition in rock cutting. Eng Fract Mech 127:135–147CrossRef
Zurück zum Zitat Zhu W, Baud P, Wong T-f (2010) Micromechanics of cataclastic pore collapse in limestone. J Geophys Res Solid Earth 115:B04405 Zhu W, Baud P, Wong T-f (2010) Micromechanics of cataclastic pore collapse in limestone. J Geophys Res Solid Earth 115:B04405
Zurück zum Zitat Zietlow WK, Labuz JF (1998) Measurement of the intrinsic process zone in rock using acoustic emission. Int J Rock Mech Min Sci 35:291–299CrossRef Zietlow WK, Labuz JF (1998) Measurement of the intrinsic process zone in rock using acoustic emission. Int J Rock Mech Min Sci 35:291–299CrossRef
Metadaten
Titel
Normal Indentation of Rock Specimens with a Blunt Tool: Role of Specimen Size and Indenter Geometry
verfasst von
Hongwei Yang
Jörg Renner
Lukas Brackmann
Arne Röttger
Publikationsdatum
28.03.2022
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 4/2022
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-021-02732-4

Weitere Artikel der Ausgabe 4/2022

Rock Mechanics and Rock Engineering 4/2022 Zur Ausgabe