Skip to main content
Erschienen in: Optical and Quantum Electronics 5/2024

01.05.2024

Novel and accurate solitary wave solutions for the perturbed Radhakrishnan–Kundu–Lakshmanan model

verfasst von: Raghda A. M. Attia, Suleman H. Alfalqi, Jameel F. Alzaidi, Mostafa M. A. Khater

Erschienen in: Optical and Quantum Electronics | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study delves into the perturbed Radhakrishnan–Kundu–Lakshmanan (\((p\mathcal {RKL})\)) model, a pivotal component within nonlinear optics and communication engineering. In addressing this challenge, we employed the Bernoulli sub-equation function method and the Khater II method as analytical approaches, complemented by numerical solutions authenticated through the exponential cubic B–spline (ECBS) method. Our investigation yielded innovative solitary wave solutions, depicted elegantly through three-dimensional, two-dimensional, and contour plots. To ascertain the precision and dependability of these outcomes, we conducted a comparative analysis between analytical and numerical findings, visually presenting them via two-dimensional graphs. The implications of our discoveries are significant, offering insights into perturbations of optical solitons within nonlinear optical fibers. Our research effectively concludes that the proposed methodologies successfully solve the \(p\mathcal {RKL}\) model, yielding highly accurate solutions. Notably, our study introduces novelty to nonlinear optics by applying the Bernoulli sub-equation function (BSE) method, the Khater II (Kh II) method, and the exponential cubic B-spline (ECBS) method to the \(p\mathcal {RKL}\) model, with a specific focus on solitary wave solutions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Annamalai, M., Veerakumar, N., Narasimhan, S.L., Selvaraj, A., Zhou, Q., Biswas, A., Ekici, M., Alshehri, H.M., Belić, M.R.: Algorithm for dark solitons with Radhakrishnan–Kundu–Lakshmanan model in an optical fiber. Results Phys. 30, 104806 (2021) Annamalai, M., Veerakumar, N., Narasimhan, S.L., Selvaraj, A., Zhou, Q., Biswas, A., Ekici, M., Alshehri, H.M., Belić, M.R.: Algorithm for dark solitons with Radhakrishnan–Kundu–Lakshmanan model in an optical fiber. Results Phys. 30, 104806 (2021)
Zurück zum Zitat Bansal, A., Biswas, A., Mahmood, M.F., Zhou, Q., Mirzazadeh, M., Alshomrani, A.S., Moshokoa, S.P., Belic, M.: Optical soliton perturbation with Radhakrishnan–Kundu–Lakshmanan equation by lie group analysis. Optik 163, 137–141 (2018)ADS Bansal, A., Biswas, A., Mahmood, M.F., Zhou, Q., Mirzazadeh, M., Alshomrani, A.S., Moshokoa, S.P., Belic, M.: Optical soliton perturbation with Radhakrishnan–Kundu–Lakshmanan equation by lie group analysis. Optik 163, 137–141 (2018)ADS
Zurück zum Zitat Batool, T., Seadawy, A.R., Rizvi, S.T.R., Naqvi, S.K.: Optical multi-wave, M-shaped rational solution, homoclinic breather, periodic cross-kink and various rational solutions with interactions for Radhakrishnan-Kundu-Lakshmanan dynamical model. J. Nonlinear Opt. Phys. Mater. 32(2), 2350015 (2023)ADS Batool, T., Seadawy, A.R., Rizvi, S.T.R., Naqvi, S.K.: Optical multi-wave, M-shaped rational solution, homoclinic breather, periodic cross-kink and various rational solutions with interactions for Radhakrishnan-Kundu-Lakshmanan dynamical model. J. Nonlinear Opt. Phys. Mater. 32(2), 2350015 (2023)ADS
Zurück zum Zitat Bayram, M.: Optical soliton solutions of the stochastic perturbed Radhakrishnan–Kundu–Lakshmanan equation via Itô calculus. Phys. Scr. 98(11), 115201 (2023)ADS Bayram, M.: Optical soliton solutions of the stochastic perturbed Radhakrishnan–Kundu–Lakshmanan equation via Itô calculus. Phys. Scr. 98(11), 115201 (2023)ADS
Zurück zum Zitat Bibi, K.: The \(\Phi \)6-model expansion method for solving the Radhakrishnan–Kundu–Lakshmanan equation with Kerr law nonlinearity. Optik 234, 166614 (2021)ADS Bibi, K.: The \(\Phi \)6-model expansion method for solving the Radhakrishnan–Kundu–Lakshmanan equation with Kerr law nonlinearity. Optik 234, 166614 (2021)ADS
Zurück zum Zitat Biswas, A.: Optical soliton perturbation with Radhakrishnan–Kundu–Lakshmanan equation by traveling wave hypothesis. Optik 171, 217–220 (2018)ADS Biswas, A.: Optical soliton perturbation with Radhakrishnan–Kundu–Lakshmanan equation by traveling wave hypothesis. Optik 171, 217–220 (2018)ADS
Zurück zum Zitat Chen, C., Li, L., Liu, W.: Some new optical solitons of the generalized Radhakrishnan–Kundu–Lakshmanan equations with powers of nonlinearity. Symmetry 14(12), 2626 (2022)ADS Chen, C., Li, L., Liu, W.: Some new optical solitons of the generalized Radhakrishnan–Kundu–Lakshmanan equations with powers of nonlinearity. Symmetry 14(12), 2626 (2022)ADS
Zurück zum Zitat Ekici, M.: Stationary optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion and kudryashov’s refractive index structures. Phys. Lett. A 440, 128146 (2022)MathSciNet Ekici, M.: Stationary optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion and kudryashov’s refractive index structures. Phys. Lett. A 440, 128146 (2022)MathSciNet
Zurück zum Zitat Garai, S., Ghose-Choudhury, A.: On the solution of the generalized Radhakrishnan–Kundu–Lakshmanan equation. Optik 243, 167374 (2021)ADS Garai, S., Ghose-Choudhury, A.: On the solution of the generalized Radhakrishnan–Kundu–Lakshmanan equation. Optik 243, 167374 (2021)ADS
Zurück zum Zitat Ghanbari, B., Gómez-Aguilar, J.F.: Optical soliton solutions for the nonlinear Radhakrishnan-Kundu-Lakshmanan equation. Mod. Phys. Lett. B 33(32), 1950402 (2019)ADSMathSciNet Ghanbari, B., Gómez-Aguilar, J.F.: Optical soliton solutions for the nonlinear Radhakrishnan-Kundu-Lakshmanan equation. Mod. Phys. Lett. B 33(32), 1950402 (2019)ADSMathSciNet
Zurück zum Zitat Ghanbari, B., Inc, M., Yusuf, A., Bayram, M.: Exact optical solitons of Radhakrishnan–Kundu–Lakshmanan equation with Kerr law nonlinearity. Mod. Phys. Lett. B 33(6), 1950061 (2019)ADSMathSciNet Ghanbari, B., Inc, M., Yusuf, A., Bayram, M.: Exact optical solitons of Radhakrishnan–Kundu–Lakshmanan equation with Kerr law nonlinearity. Mod. Phys. Lett. B 33(6), 1950061 (2019)ADSMathSciNet
Zurück zum Zitat Han, T., Li, Z., Li, C.: Bifurcation analysis, stationary optical solitons and exact solutions for generalized nonlinear Schrödinger equation with nonlinear chromatic dispersion and quintuple power-law of refractive index in optical fibers. Physica A 615, 128599 (2023) Han, T., Li, Z., Li, C.: Bifurcation analysis, stationary optical solitons and exact solutions for generalized nonlinear Schrödinger equation with nonlinear chromatic dispersion and quintuple power-law of refractive index in optical fibers. Physica A 615, 128599 (2023)
Zurück zum Zitat Khater, M.M.A.: Hybrid accurate simulations for constructing some novel analytical and numerical solutions of three-order GNLS equation. Int. J. Geometr. Methods Mod. Phys. 20(9), 2350159-12 (2023a) Khater, M.M.A.: Hybrid accurate simulations for constructing some novel analytical and numerical solutions of three-order GNLS equation. Int. J. Geometr. Methods Mod. Phys. 20(9), 2350159-12 (2023a)
Zurück zum Zitat Khater, M.M.A.: In solid physics equations, accurate and novel soliton wave structures for heating a single crystal of sodium fluoride. Int. J. Mod. Phys. B 37(7), 2350068-139 (2023b) Khater, M.M.A.: In solid physics equations, accurate and novel soliton wave structures for heating a single crystal of sodium fluoride. Int. J. Mod. Phys. B 37(7), 2350068-139 (2023b)
Zurück zum Zitat Khater, M.M.A.: Novel computational simulation of the propagation of pulses in optical fibers regarding the dispersion effect. Int. J. Mod. Phys. B 37(9), 2350083 (2023c)ADSMathSciNet Khater, M.M.A.: Novel computational simulation of the propagation of pulses in optical fibers regarding the dispersion effect. Int. J. Mod. Phys. B 37(9), 2350083 (2023c)ADSMathSciNet
Zurück zum Zitat Khater, M.M.A.: In surface tension; gravity-capillary, magneto-acoustic, and shallow water waves’ propagation. Eur. Phys. J. Plus 138(4), 320 (2023d) Khater, M.M.A.: In surface tension; gravity-capillary, magneto-acoustic, and shallow water waves’ propagation. Eur. Phys. J. Plus 138(4), 320 (2023d)
Zurück zum Zitat Khater, M.M.A.: A hybrid analytical and numerical analysis of ultra-short pulse phase shifts. Chaos, Solitons Fractals 169, 113232 (2023e)MathSciNet Khater, M.M.A.: A hybrid analytical and numerical analysis of ultra-short pulse phase shifts. Chaos, Solitons Fractals 169, 113232 (2023e)MathSciNet
Zurück zum Zitat Khater, M.M.A.: Abundant and accurate computational wave structures of the nonlinear fractional biological population model. Int. J. Mod. Phys. B 37(18), 2350176 (2023g)ADS Khater, M.M.A.: Abundant and accurate computational wave structures of the nonlinear fractional biological population model. Int. J. Mod. Phys. B 37(18), 2350176 (2023g)ADS
Zurück zum Zitat Khater, M.M.A.: Advancements in computational techniques for precise solitary wave solutions in the \((1 + 1)\)-dimensional Mikhailov–Novikov–Wang equation. Int. J. Theor. Phys. 62(7), 152 (2023h)MathSciNet Khater, M.M.A.: Advancements in computational techniques for precise solitary wave solutions in the \((1 + 1)\)-dimensional Mikhailov–Novikov–Wang equation. Int. J. Theor. Phys. 62(7), 152 (2023h)MathSciNet
Zurück zum Zitat Khater, M.M.A.: Numerous accurate and stable solitary wave solutions to the generalized modified equal-width equation. Int. J. Theor. Phys. 62(7), 151 (2023i)ADSMathSciNet Khater, M.M.A.: Numerous accurate and stable solitary wave solutions to the generalized modified equal-width equation. Int. J. Theor. Phys. 62(7), 151 (2023i)ADSMathSciNet
Zurück zum Zitat Khater, M.M.A.: Horizontal stratification of fluids and the behavior of long waves. Eur Phys J Plus 138(8), 715 (2023j) Khater, M.M.A.: Horizontal stratification of fluids and the behavior of long waves. Eur Phys J Plus 138(8), 715 (2023j)
Zurück zum Zitat Khater, M.M.A.: Physics of crystal lattices and plasma; analytical and numerical simulations of the Gilson–Pickering equation. Results Phys 44, 106193 (2023k) Khater, M.M.A.: Physics of crystal lattices and plasma; analytical and numerical simulations of the Gilson–Pickering equation. Results Phys 44, 106193 (2023k)
Zurück zum Zitat Khater, M.M.A.: Characterizing shallow water waves in channels with variable width and depth; computational and numerical simulations. Chaos, Solitons Fractals 173, 113652 (2023l)MathSciNet Khater, M.M.A.: Characterizing shallow water waves in channels with variable width and depth; computational and numerical simulations. Chaos, Solitons Fractals 173, 113652 (2023l)MathSciNet
Zurück zum Zitat Khater, M.M.A.: Soliton propagation under diffusive and nonlinear effects in physical systems; \((1+1)\)-dimensional MNW integrable equation. Phys. Lett. A 480, 128945 (2023m)MathSciNet Khater, M.M.A.: Soliton propagation under diffusive and nonlinear effects in physical systems; \((1+1)\)-dimensional MNW integrable equation. Phys. Lett. A 480, 128945 (2023m)MathSciNet
Zurück zum Zitat Khater, M.M.A.: Computational simulations of propagation of a tsunami wave across the ocean. Chaos, Solitons Fractals 174, 113806 (2023n)MathSciNet Khater, M.M.A.: Computational simulations of propagation of a tsunami wave across the ocean. Chaos, Solitons Fractals 174, 113806 (2023n)MathSciNet
Zurück zum Zitat Khater, M.M.A.: Physical and dynamic characteristics of high-amplitude ultrasonic wave propagation in nonlinear and dissipative media. Mod. Phys. Lett. B 37(36), 2350210 (2023o)ADSMathSciNet Khater, M.M.A.: Physical and dynamic characteristics of high-amplitude ultrasonic wave propagation in nonlinear and dissipative media. Mod. Phys. Lett. B 37(36), 2350210 (2023o)ADSMathSciNet
Zurück zum Zitat Khater, M.M.A.: Analyzing pulse behavior in optical fiber: novel solitary wave solutions of the perturbed Chen–Lee–Liu equation. Mod. Phys. Lett. B 37(34), 2350177 (2023p)ADSMathSciNet Khater, M.M.A.: Analyzing pulse behavior in optical fiber: novel solitary wave solutions of the perturbed Chen–Lee–Liu equation. Mod. Phys. Lett. B 37(34), 2350177 (2023p)ADSMathSciNet
Zurück zum Zitat Khater, M.M.A.: Computational and numerical wave solutions of the Caudrey–Dodd–Gibbon equation. Heliyon 9, e13511 (2023q) Khater, M.M.A.: Computational and numerical wave solutions of the Caudrey–Dodd–Gibbon equation. Heliyon 9, e13511 (2023q)
Zurück zum Zitat Khater, M.M.A.: Multi-vector with nonlocal and non-singular kernel ultrashort optical solitons pulses waves in birefringent fibers. Chaos, Solitons Fractals 167, 113098 (2023r)MathSciNet Khater, M.M.A.: Multi-vector with nonlocal and non-singular kernel ultrashort optical solitons pulses waves in birefringent fibers. Chaos, Solitons Fractals 167, 113098 (2023r)MathSciNet
Zurück zum Zitat Khater, M.M.A.: Prorogation of waves in shallow water through unidirectional Dullin–Gottwald–Holm model; computational simulations. Int. J. Mod. Phys. B 37(8), 2350071 (2023s)ADS Khater, M.M.A.: Prorogation of waves in shallow water through unidirectional Dullin–Gottwald–Holm model; computational simulations. Int. J. Mod. Phys. B 37(8), 2350071 (2023s)ADS
Zurück zum Zitat Khater, M.M., Alabdali, A.M.: Multiple novels and accurate traveling wave and numerical solutions of the \((2+ 1)\) dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation. Mathematics 9(12), 1440 (2021) Khater, M.M., Alabdali, A.M.: Multiple novels and accurate traveling wave and numerical solutions of the \((2+ 1)\) dimensional Fisher–Kolmogorov–Petrovskii–Piskunov equation. Mathematics 9(12), 1440 (2021)
Zurück zum Zitat Khater, M.M., Attia, R.A.: Simulating the behavior of the population dynamics using the non-local fractional Chaffee–Infante equation. Fractals 31(10), 1–14 (2023) Khater, M.M., Attia, R.A.: Simulating the behavior of the population dynamics using the non-local fractional Chaffee–Infante equation. Fractals 31(10), 1–14 (2023)
Zurück zum Zitat Khater, M.M., Alabdali, A.M., Mashat, A., Salama, S.A.: Optical soliton wave solutions of the fractional complex paraxial wave dynamical model along with Kerr media. Fractals 30(05), 2240153 (2022)ADS Khater, M.M., Alabdali, A.M., Mashat, A., Salama, S.A.: Optical soliton wave solutions of the fractional complex paraxial wave dynamical model along with Kerr media. Fractals 30(05), 2240153 (2022)ADS
Zurück zum Zitat Kudryashov, N.A.: The Radhakrishnan–Kundu–Lakshmanan equation with arbitrary refractive index and its exact solutions. Optik 238, 166738 (2021)ADS Kudryashov, N.A.: The Radhakrishnan–Kundu–Lakshmanan equation with arbitrary refractive index and its exact solutions. Optik 238, 166738 (2021)ADS
Zurück zum Zitat Kudryashov, N.A., Safonova, D.V., Biswas, A.: Painlevé analysis and a solution to the traveling wave reduction of the Radhakrishnan–Kundu–Lakshmanan equation. Regul. Chaot. Dyn. 24(6), 607–614 (2019)ADS Kudryashov, N.A., Safonova, D.V., Biswas, A.: Painlevé analysis and a solution to the traveling wave reduction of the Radhakrishnan–Kundu–Lakshmanan equation. Regul. Chaot. Dyn. 24(6), 607–614 (2019)ADS
Zurück zum Zitat Lu, D., Seadawy, A.R., Khater, M.M.A.: Dispersive optical soliton solutions of the generalized Radhakrishnan–Kundu–Lakshmanan dynamical equation with power law nonlinearity and its applications. Optik 164, 54–64 (2018)ADS Lu, D., Seadawy, A.R., Khater, M.M.A.: Dispersive optical soliton solutions of the generalized Radhakrishnan–Kundu–Lakshmanan dynamical equation with power law nonlinearity and its applications. Optik 164, 54–64 (2018)ADS
Zurück zum Zitat Nifontov, D.R., Borodina, A.G., Medvedev, V.A.: Comment on optical solitons for Radhakrishnan–Kundu–Lakshmanan equation in the presence of perturbation term and having Kerr law. Optik 284, 170555 (2023)ADS Nifontov, D.R., Borodina, A.G., Medvedev, V.A.: Comment on optical solitons for Radhakrishnan–Kundu–Lakshmanan equation in the presence of perturbation term and having Kerr law. Optik 284, 170555 (2023)ADS
Zurück zum Zitat Ozdemir, N.: Optical solitons for Radhakrishnan–Kundu–Lakshmanan equation in the presence of perturbation term and having Kerr law. Optik 271, 170127 (2022)ADS Ozdemir, N.: Optical solitons for Radhakrishnan–Kundu–Lakshmanan equation in the presence of perturbation term and having Kerr law. Optik 271, 170127 (2022)ADS
Zurück zum Zitat Ozdemir, N., Esen, H., Secer, A., Bayram, M., Sulaiman, T.A., Yusuf, A., Aydin, H.: Optical solitons and other solutions to the Radhakrishnan–Kundu–Lakshmanan equation. Optik 242, 167363 (2021)ADS Ozdemir, N., Esen, H., Secer, A., Bayram, M., Sulaiman, T.A., Yusuf, A., Aydin, H.: Optical solitons and other solutions to the Radhakrishnan–Kundu–Lakshmanan equation. Optik 242, 167363 (2021)ADS
Zurück zum Zitat Ozisik, M., Secer, A., Bayram, M., Cinar, M., Ozdemir, N., Esen, H., Onder, I.: Investigation of optical soliton solutions of higher-order nonlinear Schrödinger equation having Kudryashov nonlinear refractive index. Optik 274, 170548 (2023)ADS Ozisik, M., Secer, A., Bayram, M., Cinar, M., Ozdemir, N., Esen, H., Onder, I.: Investigation of optical soliton solutions of higher-order nonlinear Schrödinger equation having Kudryashov nonlinear refractive index. Optik 274, 170548 (2023)ADS
Zurück zum Zitat Peng, C., Li, Z.: Soliton solutions and dynamics analysis of fractional Radhakrishnan–Kundu–Lakshmanan equation with multiplicative noise in the Stratonovich sense. Results Phys. 53, 106985 (2023) Peng, C., Li, Z.: Soliton solutions and dynamics analysis of fractional Radhakrishnan–Kundu–Lakshmanan equation with multiplicative noise in the Stratonovich sense. Results Phys. 53, 106985 (2023)
Zurück zum Zitat Sulaiman, T.A., Bulut, H.: The solitary wave solutions to the fractional Radhakrishnan–Kundu–Lakshmanan model. Int. J. Mod. Phys. B 33(31), 1950370 (2019)ADSMathSciNet Sulaiman, T.A., Bulut, H.: The solitary wave solutions to the fractional Radhakrishnan–Kundu–Lakshmanan model. Int. J. Mod. Phys. B 33(31), 1950370 (2019)ADSMathSciNet
Zurück zum Zitat Triki, H., Zhou, Q., Biswas, A., Liu, W., Yıldırım, Y., Alshehri, H.M., Belic, M.R.: Chirped optical solitons having polynomial law of nonlinear refractive index with self-steepening and nonlinear dispersion. Phys. Lett. A 417, 127698 (2021)MathSciNet Triki, H., Zhou, Q., Biswas, A., Liu, W., Yıldırım, Y., Alshehri, H.M., Belic, M.R.: Chirped optical solitons having polynomial law of nonlinear refractive index with self-steepening and nonlinear dispersion. Phys. Lett. A 417, 127698 (2021)MathSciNet
Zurück zum Zitat Ullah, N., Asjad, M.I., Ur Rehman, H., Akgül, A.: Construction of optical solitons of Radhakrishnan–Kundu–Lakshmanan equation in birefringent fibers. Nonlinear Eng. 11(1), 80–91 (2022)ADS Ullah, N., Asjad, M.I., Ur Rehman, H., Akgül, A.: Construction of optical solitons of Radhakrishnan–Kundu–Lakshmanan equation in birefringent fibers. Nonlinear Eng. 11(1), 80–91 (2022)ADS
Zurück zum Zitat Yasmin, H., Aljahdaly, N.H., Saeed, A.M., Shah, R.: Probing families of optical soliton solutions in fractional perturbed Radhakrishnan–Kundu–Lakshmanan model with improved versions of extended direct algebraic method. Fractal Fract. 7(7), 512 (2023) Yasmin, H., Aljahdaly, N.H., Saeed, A.M., Shah, R.: Probing families of optical soliton solutions in fractional perturbed Radhakrishnan–Kundu–Lakshmanan model with improved versions of extended direct algebraic method. Fractal Fract. 7(7), 512 (2023)
Zurück zum Zitat Yıldırım, Y., Biswas, A., Zhou, Q., Alzahrani, A.K., Belic, M.R.: Optical solitons in birefringent fibers with Radhakrishnan–Kundu–Lakshmanan equation by a couple of strategically sound integration architectures. Chin. J. Phys. 65, 341–354 (2020)MathSciNet Yıldırım, Y., Biswas, A., Zhou, Q., Alzahrani, A.K., Belic, M.R.: Optical solitons in birefringent fibers with Radhakrishnan–Kundu–Lakshmanan equation by a couple of strategically sound integration architectures. Chin. J. Phys. 65, 341–354 (2020)MathSciNet
Zurück zum Zitat Zhang, J., Kadkhoda, N., Baymani, M., Jafari, H.: Analytical solutions for time-fractional Radhakrishnan–Kundu equation. Fractals 31(4), 2340067-28 (2023) Zhang, J., Kadkhoda, N., Baymani, M., Jafari, H.: Analytical solutions for time-fractional Radhakrishnan–Kundu equation. Fractals 31(4), 2340067-28 (2023)
Metadaten
Titel
Novel and accurate solitary wave solutions for the perturbed Radhakrishnan–Kundu–Lakshmanan model
verfasst von
Raghda A. M. Attia
Suleman H. Alfalqi
Jameel F. Alzaidi
Mostafa M. A. Khater
Publikationsdatum
01.05.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 5/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-024-06317-7

Weitere Artikel der Ausgabe 5/2024

Optical and Quantum Electronics 5/2024 Zur Ausgabe

Neuer Inhalt