Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.03.2015 | Ausgabe 1/2015

Annals of Data Science 1/2015

Novel Approach for Network Traffic Pattern Analysis using Clustering-based Collective Anomaly Detection

Zeitschrift:
Annals of Data Science > Ausgabe 1/2015
Autoren:
Mohiuddin Ahmed, Abdun Naser Mahmood

Abstract

There is increasing interest in the data mining and network management communities in improving existing techniques for the prompt analysis of underlying traffic patterns. Anomaly detection is one such technique for detecting abnormalities in many different domains, such as computer network intrusion, gene expression analysis, financial fraud detection and many more. Clustering is a useful unsupervised method for both identifying underlying patterns in data and anomaly detection. However, existing clustering-based techniques have high false alarm rates and consider only individual data instances for anomaly detection. Interestingly, there are traffic flows which seem legitimate but are targeted at disrupting a normal computing environment, such as the Denial of Service (DoS) attack. The presence of such anomalous data instances explains the poor performances of existing clustering-based anomaly detection techniques. In this paper, we formulate the problem of detecting DoS attacks as a collective anomaly which is a pattern in the data when a group of similar data instances behave anomalously with respect to the entire dataset. We propose a framework for collective anomaly detection using a partitional clustering technique to detect anomalies based on an empirical analysis of an attack’s characteristics. We validate our approach by comparing its results with those from existing techniques using benchmark datasets.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2015

Annals of Data Science 1/2015 Zur Ausgabe

Premium Partner

    Bildnachweise