Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 3-4/2023

10.01.2023 | Original Article

Numerical analysis modeling of temperature field in swing-arc narrow gap GMA welding with additional wire

verfasst von: Yejun Wu, Jiayou Wang, Guoxiang Xu, Yuqing Jiang

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 3-4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study develops a heat source model for swing-arc narrow gap gas metal arc welding (SA–NG–GMAW) based on macrothermal transfer theory and geometric feature of weld cross-section after considering the influence of arc swing, a geometric feature of welded joint, movement of the additional wire, and weld surface shape on the arc heat flux distribution. The transient temperature profile and thermal cycle curve in SA–NG–GMAW were calculated using ANSYS software, and their distribution features were analyzed. The results show that the established heat source model can accurately reflect the moving path of the swing-arc and its thermal action feature. Furthermore, the calculated geometry and size of the weld cross-section and thermal cycles of temperature measurement characteristic point agree well with the experimental data, which validates the accuracy of the developed model. The thermal cycles at the weld toe have five peaks, with an interval of about one shaking cycle between two adjacent peaks. Without the additional wire, there is a noticeable “double peak” feature at the bottom of the cross-section of the weld, whereas the “double peak” feature is diminished with additional wire. The additional wire does not significantly increase the width of the heat-affected zone under the condition of effectively improving the welding efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang JY, Zhu J, Fu P, Su RJ, Han W, Yang F (2012) A swing arc system for narrow gap GMA welding. ISIJ Int 52:110–114CrossRef Wang JY, Zhu J, Fu P, Su RJ, Han W, Yang F (2012) A swing arc system for narrow gap GMA welding. ISIJ Int 52:110–114CrossRef
2.
Zurück zum Zitat Xu GX, Li L, Wang JY, Zhu J, Li PF (2018) Study of weld formation in swing arc narrow gap vertical GMA welding by numerical modeling and experiment. Int J Adv Manuf Technol 96:1905–1917CrossRef Xu GX, Li L, Wang JY, Zhu J, Li PF (2018) Study of weld formation in swing arc narrow gap vertical GMA welding by numerical modeling and experiment. Int J Adv Manuf Technol 96:1905–1917CrossRef
3.
Zurück zum Zitat Huang JK, Chen HZ, He J, Yu SR, Pan W, Fan D (2019) Narrow gap applications of swing TIG-MIG hybrid weldings. J Mater Process Technol 271:609–614CrossRef Huang JK, Chen HZ, He J, Yu SR, Pan W, Fan D (2019) Narrow gap applications of swing TIG-MIG hybrid weldings. J Mater Process Technol 271:609–614CrossRef
4.
Zurück zum Zitat Wang JY, Ren YS, Yang F (2017) Novel rotation arc system for narrow gap MAG welding. Sci Technol Weld Join 12:505–507CrossRef Wang JY, Ren YS, Yang F (2017) Novel rotation arc system for narrow gap MAG welding. Sci Technol Weld Join 12:505–507CrossRef
5.
Zurück zum Zitat Cai XY, Lin SB, Fan CL, Yang CL, Zhang W, Wang YW (2016) Molten pool behaviour and welding formation mechanism of tandem narrow gap vertical GMAW. Sci Technol Weld Join 21:124–130CrossRef Cai XY, Lin SB, Fan CL, Yang CL, Zhang W, Wang YW (2016) Molten pool behaviour and welding formation mechanism of tandem narrow gap vertical GMAW. Sci Technol Weld Join 21:124–130CrossRef
6.
Zurück zum Zitat Cui HC, Jiang ZD, Tang XH, Lu FG (2014) Research on narrow gap GMAWwith swing arc system in horizontal position. Int J Adv Manuf Technol 74:297–305CrossRef Cui HC, Jiang ZD, Tang XH, Lu FG (2014) Research on narrow gap GMAWwith swing arc system in horizontal position. Int J Adv Manuf Technol 74:297–305CrossRef
7.
Zurück zum Zitat Xu WH, Lin SB, Fan CL, Zhou XQ, Yang CL (2014) Statistical modeling of weld bead geometry in oscillating arc narrow gap all position GMA welding. Int J Adv Manuf Technol 72:1705–1716CrossRef Xu WH, Lin SB, Fan CL, Zhou XQ, Yang CL (2014) Statistical modeling of weld bead geometry in oscillating arc narrow gap all position GMA welding. Int J Adv Manuf Technol 72:1705–1716CrossRef
8.
Zurück zum Zitat Xu GX, Wang JY, Li PF, Zhu J, Cao QN (2018) Numerical analysis of heat transfer and fluid flow in swing arc narrow gap GMA welding. J Mater Process Technol 252:260–269CrossRef Xu GX, Wang JY, Li PF, Zhu J, Cao QN (2018) Numerical analysis of heat transfer and fluid flow in swing arc narrow gap GMA welding. J Mater Process Technol 252:260–269CrossRef
9.
Zurück zum Zitat Xu GX, Zhu J, Wang JY, Li L, Zheng ZQ (2019) Numerical analysis model for fluid flow in swing arc narrow gap vertical FCAW. J Mech Eng 55:63–69CrossRef Xu GX, Zhu J, Wang JY, Li L, Zheng ZQ (2019) Numerical analysis model for fluid flow in swing arc narrow gap vertical FCAW. J Mech Eng 55:63–69CrossRef
10.
Zurück zum Zitat Wang JY, Zhu J, Zhang C, Wang N, Su RJ, Yang F (2015) Development of swing arc narrow gap vertical welding process. ISIJ Int 55:1076–1082CrossRef Wang JY, Zhu J, Zhang C, Wang N, Su RJ, Yang F (2015) Development of swing arc narrow gap vertical welding process. ISIJ Int 55:1076–1082CrossRef
11.
Zurück zum Zitat Lan H, Zhang HJ, Chen AJ (2015) Numerical simulation of dynamic process and thermal physical properties of narrow gap MAG vertical welding. Trans China Weld Inst 36:77–82 Lan H, Zhang HJ, Chen AJ (2015) Numerical simulation of dynamic process and thermal physical properties of narrow gap MAG vertical welding. Trans China Weld Inst 36:77–82
12.
Zurück zum Zitat Guo N, Lin SB, Gao C, Fan CL, Yang CL (2009) Study on elimination of interlayer defects in horizontal joints made by rotating arc narrow gap welding. Sci Technol Weld Join 14:584–588CrossRef Guo N, Lin SB, Gao C, Fan CL, Yang CL (2009) Study on elimination of interlayer defects in horizontal joints made by rotating arc narrow gap welding. Sci Technol Weld Join 14:584–588CrossRef
13.
Zurück zum Zitat Zhu CX, Tang XH, He Y, Lu FG, Cui HC (2016) Characteristics and formation mechanism of side wall pores in NG-GMAW of 5083 Al-alloy. J Mater Process Technol 238:274–283CrossRef Zhu CX, Tang XH, He Y, Lu FG, Cui HC (2016) Characteristics and formation mechanism of side wall pores in NG-GMAW of 5083 Al-alloy. J Mater Process Technol 238:274–283CrossRef
14.
Zurück zum Zitat Xu WH, Dong CL, Zhang YP, Yi YY (2017) Characteristics and mechanisms of weld formation during oscillating arc narrow gap vertical up GMA welding. Weld World 61:241–248CrossRef Xu WH, Dong CL, Zhang YP, Yi YY (2017) Characteristics and mechanisms of weld formation during oscillating arc narrow gap vertical up GMA welding. Weld World 61:241–248CrossRef
15.
Zurück zum Zitat Traidia A, Roger F, Schroeder J, Guyot E, Marlaud T (2013) On the effects of gravity and sulfur content on the weld shape in horizontal narrow gap GTAW of stainless steels. J Mater Process Technol 213:1128–1138CrossRef Traidia A, Roger F, Schroeder J, Guyot E, Marlaud T (2013) On the effects of gravity and sulfur content on the weld shape in horizontal narrow gap GTAW of stainless steels. J Mater Process Technol 213:1128–1138CrossRef
16.
Zurück zum Zitat Wang JY, Zhu J, Zhang C, Xu GX, Li WH (2016) Effect of arc swing parameters on narrow gap vertical GMA weld formation. ISIJ Int 56:844–850CrossRef Wang JY, Zhu J, Zhang C, Xu GX, Li WH (2016) Effect of arc swing parameters on narrow gap vertical GMA weld formation. ISIJ Int 56:844–850CrossRef
17.
Zurück zum Zitat Zhu J, Wang JY, Su N, Xu GX, Yang MS (2017) An infrared visual sensing detection approach for swing arc narrow gas weld deviation. J Mater Process Technol 243:258–268CrossRef Zhu J, Wang JY, Su N, Xu GX, Yang MS (2017) An infrared visual sensing detection approach for swing arc narrow gas weld deviation. J Mater Process Technol 243:258–268CrossRef
18.
Zurück zum Zitat Zhou JL, Shu FY, Zhao HY, Lü YH, Liu YX, He P (2019) Microstructure and mechanical properties of heat affected zone in multi-pass GMA welded Al–Zn–Mg–Cu alloy. Trans Nonferrous Metals Soc China 29:2273–2280CrossRef Zhou JL, Shu FY, Zhao HY, Lü YH, Liu YX, He P (2019) Microstructure and mechanical properties of heat affected zone in multi-pass GMA welded Al–Zn–Mg–Cu alloy. Trans Nonferrous Metals Soc China 29:2273–2280CrossRef
19.
Zurück zum Zitat Akhatova A, Robaut F, Verdier M, Yescas M, Roch F, Tassin C, Van Landeghem HP (2020) Microstructural and mechanical investigation of the near fusion boundary region in thermally aged 18MND5 / alloy 52 narrow-gap dissimilar metal weld. Mater Sci Eng, A 788:139592CrossRef Akhatova A, Robaut F, Verdier M, Yescas M, Roch F, Tassin C, Van Landeghem HP (2020) Microstructural and mechanical investigation of the near fusion boundary region in thermally aged 18MND5 / alloy 52 narrow-gap dissimilar metal weld. Mater Sci Eng, A 788:139592CrossRef
20.
Zurück zum Zitat Näsström J, Brueckner F, Kaplan AFH (2020) Imperfections in narrow gap multilayer welding - potential causes and countermeasures. Opt Lasers Eng 129:106011CrossRef Näsström J, Brueckner F, Kaplan AFH (2020) Imperfections in narrow gap multilayer welding - potential causes and countermeasures. Opt Lasers Eng 129:106011CrossRef
21.
Zurück zum Zitat Liu YB, Zhang HM, Sun QJ (2018) Effect of magnetic field on the weld temperature field and flow behavior of molten pool in Al/steel CMT welding process. J Mech Eng 54:48–54CrossRef Liu YB, Zhang HM, Sun QJ (2018) Effect of magnetic field on the weld temperature field and flow behavior of molten pool in Al/steel CMT welding process. J Mech Eng 54:48–54CrossRef
22.
Zurück zum Zitat Huang JK, Sun TL, Fan D (2016) Study on the surface flow behavior of TIG weld pool. J Mech Eng 52:31–37CrossRef Huang JK, Sun TL, Fan D (2016) Study on the surface flow behavior of TIG weld pool. J Mech Eng 52:31–37CrossRef
23.
Zurück zum Zitat Gao XS, Wu CS, Goecke SF, Küglerc H (2017) Numerical simulation of temperature field, fluid flow and weld bead formation in oscillating single mode laser-GMA hybrid welding. J Mater Process Technol 242:147–159CrossRef Gao XS, Wu CS, Goecke SF, Küglerc H (2017) Numerical simulation of temperature field, fluid flow and weld bead formation in oscillating single mode laser-GMA hybrid welding. J Mater Process Technol 242:147–159CrossRef
24.
Zurück zum Zitat Li WH, Yu R, Huang DC, Wu J, Wang YR, Hu T, Wang JY (2019) Numerical simulation of multilayer rotating arc narrow gap MAG welding for medium steel plate. J Manuf Process 45:460–471CrossRef Li WH, Yu R, Huang DC, Wu J, Wang YR, Hu T, Wang JY (2019) Numerical simulation of multilayer rotating arc narrow gap MAG welding for medium steel plate. J Manuf Process 45:460–471CrossRef
25.
Zurück zum Zitat Gu H, Väistö T, Li L (2020) Numerical and experimental study on the molten pool dynamics and fusion zone formation in multi-pass narrow gap laser welding. Opt Laser Technol 126:106081CrossRef Gu H, Väistö T, Li L (2020) Numerical and experimental study on the molten pool dynamics and fusion zone formation in multi-pass narrow gap laser welding. Opt Laser Technol 126:106081CrossRef
26.
Zurück zum Zitat Elmesalamy AS, Abdolvand H, Walsh JN, Francis JA, Suder W, Williams S, Li L (2016) Measurement and modelling of the residual stresses in autogenous and narrow gap laser welded AISI grade 316L stainless steel plates. Int J Press Vessels Pip 147:64–78CrossRef Elmesalamy AS, Abdolvand H, Walsh JN, Francis JA, Suder W, Williams S, Li L (2016) Measurement and modelling of the residual stresses in autogenous and narrow gap laser welded AISI grade 316L stainless steel plates. Int J Press Vessels Pip 147:64–78CrossRef
27.
Zurück zum Zitat Serizawa H, Nakamura S, Kanbe K, Fujita Y, Asai S, Murakawa H (2013) Numerical analysis of deformation in multi-pass circumferential TIG welding with narrow gap. Weld World 57:615–623CrossRef Serizawa H, Nakamura S, Kanbe K, Fujita Y, Asai S, Murakawa H (2013) Numerical analysis of deformation in multi-pass circumferential TIG welding with narrow gap. Weld World 57:615–623CrossRef
28.
Zurück zum Zitat Zhang HJ, Zhang GJ, Cai CB (2008) Numerical simulation of temperature field of dynamic welding process with weaving. Trans China Weld Inst 29:65–68 Zhang HJ, Zhang GJ, Cai CB (2008) Numerical simulation of temperature field of dynamic welding process with weaving. Trans China Weld Inst 29:65–68
29.
Zurück zum Zitat Xu GX, Pan HC, Wang JY (2017) Numerical analysis model of temperature field in swing-arc narrow gap GMAW. Trans China Weld Inst 38:55–60 Xu GX, Pan HC, Wang JY (2017) Numerical analysis model of temperature field in swing-arc narrow gap GMAW. Trans China Weld Inst 38:55–60
30.
Zurück zum Zitat Goldak J, Chakravarti A, Bibby M (1984) A new finite element method model for welding heat sources, metallurgical transactions B. 15(2):299–305. Goldak J, Chakravarti A, Bibby M (1984) A new finite element method model for welding heat sources, metallurgical transactions B. 15(2):299–305.
Metadaten
Titel
Numerical analysis modeling of temperature field in swing-arc narrow gap GMA welding with additional wire
verfasst von
Yejun Wu
Jiayou Wang
Guoxiang Xu
Yuqing Jiang
Publikationsdatum
10.01.2023
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 3-4/2023
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-022-10772-5

Weitere Artikel der Ausgabe 3-4/2023

The International Journal of Advanced Manufacturing Technology 3-4/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.