Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 9/2023

01.11.2022 | Research Article-Mechanical Engineering

Numerical and Analytical Investigation of the Surface Evaporation Rate of the Different Nanofluids and Optimization Results by Using the RSM Method

verfasst von: Morteza Bayati, Mohsen Tahmasebi Sarvestani

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 9/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present work, the numerical and analytical investigation was performed on water surface evaporation rate as a base fluid as well as Al2O3 and TiO2 nanofluids. The numerical investigation was conducted via three-dimensional computational fluid dynamics (CFD). The response surface method (RSM) was used to perform the analysis and enhance the pure water’s old analytical associations such as different effects influencing the rate of the evaporation and using them for nanoparticles. The parameters that have been studied include temperature, humidity, speed, concentration and nano particle size. Based on the previous correlation and experimental results, the attained results were validated. Through the optimization procedure, an algebraic expression was obtained for predicting the rate of surface evaporation including the parameters influencing evaporation. The RSM technique yielded the minimum and maximum rate of the evaporation. Then, it was indicated that the existence of the nanoparticles in the base fluid changes the saturation vapor pressure and thus the base fluid’s surface evaporation rate. In the present work, a correlation was obtained for the rate of surface evaporation based on the effective parameters like the nanofluid’s saturation vapor pressure, free stream velocity, free stream temperature, nanofluid relative humidity, and nanoparticle concentration, and nanoparticle size.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Linsley, R.K.: Water-Resources Engineering. McGraw-Hill, New York (1979) Linsley, R.K.: Water-Resources Engineering. McGraw-Hill, New York (1979)
2.
Zurück zum Zitat Treyball, R.E.: Mass Transfer Operation. McGraw Hill Inc, Tokyo (1990) Treyball, R.E.: Mass Transfer Operation. McGraw Hill Inc, Tokyo (1990)
3.
Zurück zum Zitat Leaney, F.; Christen, E.: On-farm and community scale salt disposal basins on the Riverine Plain: Evaluating basin leakage rate, disposal capacity, and plume development. Tech. Rep. CRC for Catchment Hydrology (2000) Leaney, F.; Christen, E.: On-farm and community scale salt disposal basins on the Riverine Plain: Evaluating basin leakage rate, disposal capacity, and plume development. Tech. Rep. CRC for Catchment Hydrology (2000)
4.
Zurück zum Zitat Chen, R.H.; Phuoc, T.X.; Martello, D.: Effects of nanoparticles on nanofluid droplet evaporation. Int. J. Heat Mass Transf. 53, 3677 (2010)CrossRef Chen, R.H.; Phuoc, T.X.; Martello, D.: Effects of nanoparticles on nanofluid droplet evaporation. Int. J. Heat Mass Transf. 53, 3677 (2010)CrossRef
5.
Zurück zum Zitat Sefiane, K.; Bennacer, R.: Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates. Adv. Colloid Interface Sci. 147, 263–271 (2009)CrossRef Sefiane, K.; Bennacer, R.: Nanofluids droplets evaporation kinetics and wetting dynamics on rough heated substrates. Adv. Colloid Interface Sci. 147, 263–271 (2009)CrossRef
6.
Zurück zum Zitat Abid Siddiquia, A.; Turkyilmazoglu, M.: Natural convection in the ferrofluid enclosed in a porous and permeable cavity. Int. Commun. Heat Mass Transf. 113, 104499 (2020)CrossRef Abid Siddiquia, A.; Turkyilmazoglu, M.: Natural convection in the ferrofluid enclosed in a porous and permeable cavity. Int. Commun. Heat Mass Transf. 113, 104499 (2020)CrossRef
7.
Zurück zum Zitat Abid Siddiquia, A.; Turkyilmazoglu, M.: A new theoretical approach of wall transpiration in the cavity flow of the Ferrofluids. Micromach. MDPI 10, 373–389 (2019)CrossRef Abid Siddiquia, A.; Turkyilmazoglu, M.: A new theoretical approach of wall transpiration in the cavity flow of the Ferrofluids. Micromach. MDPI 10, 373–389 (2019)CrossRef
8.
Zurück zum Zitat Wang, X.; Xu, X.; Choi, S.: Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Trans. 13, 474–480 (1999)CrossRef Wang, X.; Xu, X.; Choi, S.: Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Trans. 13, 474–480 (1999)CrossRef
9.
Zurück zum Zitat Tran, X.P.; Howard, B.; Chyu, M.K.: Synthesis and rheological properties of cation-exchanged Laponite suspensions. Colloids Surf. A Physicochem. Eng. Asp. 351, 71–77 (2009)CrossRef Tran, X.P.; Howard, B.; Chyu, M.K.: Synthesis and rheological properties of cation-exchanged Laponite suspensions. Colloids Surf. A Physicochem. Eng. Asp. 351, 71–77 (2009)CrossRef
10.
Zurück zum Zitat Divsalar, A.; Divsalar, H.; Dods, M.N.; Prosser, R.W.; Tsotsis, T.T.: Field testing of a UV photodecomposition reactor for Siloxane removal from landfill gas. Ind. Eng. Chem. Res. 58, 16502–16515 (2019)CrossRef Divsalar, A.; Divsalar, H.; Dods, M.N.; Prosser, R.W.; Tsotsis, T.T.: Field testing of a UV photodecomposition reactor for Siloxane removal from landfill gas. Ind. Eng. Chem. Res. 58, 16502–16515 (2019)CrossRef
11.
Zurück zum Zitat Raimundo, A.M.; Gaspar, A.R.; Oliveira, A.V.; Quintela, D.A.: Wind tunnel measurements and numerical simulations of water evaporation in forced convection airflow. Int. J. Therm. Sci. 86, 28–40 (2014)CrossRef Raimundo, A.M.; Gaspar, A.R.; Oliveira, A.V.; Quintela, D.A.: Wind tunnel measurements and numerical simulations of water evaporation in forced convection airflow. Int. J. Therm. Sci. 86, 28–40 (2014)CrossRef
12.
Zurück zum Zitat Chu, C.R.; Li, M.H.; Chen, Y.Y.; Kuo, Y.H.: A wind tunnel experiment on the evaporation rate of Class A evaporation pan. J. Hydrol. 381, 221–224 (2010)CrossRef Chu, C.R.; Li, M.H.; Chen, Y.Y.; Kuo, Y.H.: A wind tunnel experiment on the evaporation rate of Class A evaporation pan. J. Hydrol. 381, 221–224 (2010)CrossRef
13.
Zurück zum Zitat Daneshkar Arasteh, P.; Tajrishi, M.; Mirlatifi, M.: Investigation of the effect of wind speed on evaporation from the surface of the reservoir of semi-Sistan reservoir by Dalton method. Sharif Civ. Eng. 23, 13–20 (2007) Daneshkar Arasteh, P.; Tajrishi, M.; Mirlatifi, M.: Investigation of the effect of wind speed on evaporation from the surface of the reservoir of semi-Sistan reservoir by Dalton method. Sharif Civ. Eng. 23, 13–20 (2007)
14.
Zurück zum Zitat Moghiman, M.; Joudat, A.: Effect of air velocity on water evaporation rate in indoor swimming pools. Iran J. Mech. Eng. 8, 19–30 (2007) Moghiman, M.; Joudat, A.: Effect of air velocity on water evaporation rate in indoor swimming pools. Iran J. Mech. Eng. 8, 19–30 (2007)
15.
Zurück zum Zitat Piri, M.; Hesam, M.; Dehghani, A.; Meftah, H.M.: Experimental study on the effect of physical and chemical approach in reducing the evaporation from water surface. J. Soil Water Conserv. 17, 141–154 (2010) Piri, M.; Hesam, M.; Dehghani, A.; Meftah, H.M.: Experimental study on the effect of physical and chemical approach in reducing the evaporation from water surface. J. Soil Water Conserv. 17, 141–154 (2010)
16.
Zurück zum Zitat Kavianpour, M.; Kiani, A.; Nozari, N.: Reduce of water tanks evaporation rates using Jojoba Alcohol. In: 8th International Conference on Civil Engineering. Shiraz, Iran (2010) Kavianpour, M.; Kiani, A.; Nozari, N.: Reduce of water tanks evaporation rates using Jojoba Alcohol. In: 8th International Conference on Civil Engineering. Shiraz, Iran (2010)
17.
Zurück zum Zitat Piri, M.; Hesam, M.; Dehghani, A.; Halaghi, M.M.; Ghazali, A.A.: Determining of effect of using heavy alcohols on reduction of evaporation in water storage surface. Chem. J. Agric. Sci. Nat. Res. 16, 284–293 (2009) Piri, M.; Hesam, M.; Dehghani, A.; Halaghi, M.M.; Ghazali, A.A.: Determining of effect of using heavy alcohols on reduction of evaporation in water storage surface. Chem. J. Agric. Sci. Nat. Res. 16, 284–293 (2009)
18.
Zurück zum Zitat Wei, Y.; Deng, W.; Chen, R.H.: Effects of insoluble nanoparticles on nanofluid droplet evaporation. Int. J. Heat Mass Transfer. 97, 725–734 (2016)CrossRef Wei, Y.; Deng, W.; Chen, R.H.: Effects of insoluble nanoparticles on nanofluid droplet evaporation. Int. J. Heat Mass Transfer. 97, 725–734 (2016)CrossRef
19.
Zurück zum Zitat Moghiman, M.; Aslani, B.: Influence of nanoparticles on reducing and enhancing evaporation mass transfer and its efficiency. Int. J. Heat Mass Transfer. 61, 114–118 (2013)CrossRef Moghiman, M.; Aslani, B.: Influence of nanoparticles on reducing and enhancing evaporation mass transfer and its efficiency. Int. J. Heat Mass Transfer. 61, 114–118 (2013)CrossRef
20.
Zurück zum Zitat Tso, C.Y.; Chao, C.Y.H.: Study of enthalpy of evaporation, saturated vapor pressure and evaporation rate of aqueous nanofluids. Int. J. Heat Mass Transfer. 84, 931–941 (2015)CrossRef Tso, C.Y.; Chao, C.Y.H.: Study of enthalpy of evaporation, saturated vapor pressure and evaporation rate of aqueous nanofluids. Int. J. Heat Mass Transfer. 84, 931–941 (2015)CrossRef
21.
Zurück zum Zitat Zhong, J.; Huang, C.; Wu, D.; Lin, Z.: Influence factors of the evaporation rate of a solar steam generation system: a numerical study. Int. J. Heat Mass Transf. 128, 860–864 (2019)CrossRef Zhong, J.; Huang, C.; Wu, D.; Lin, Z.: Influence factors of the evaporation rate of a solar steam generation system: a numerical study. Int. J. Heat Mass Transf. 128, 860–864 (2019)CrossRef
22.
Zurück zum Zitat Galeev, A.; Chistov, Y.; Ponikarov, S.: Numerical analysis of flammable vapour cloud formation from gasoline pool. Process Saf. Environ. Prot. 137, 211–222 (2020)CrossRef Galeev, A.; Chistov, Y.; Ponikarov, S.: Numerical analysis of flammable vapour cloud formation from gasoline pool. Process Saf. Environ. Prot. 137, 211–222 (2020)CrossRef
23.
Zurück zum Zitat Selimefendigil, F.; Oztop, H.F.: Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. Int. J. Heat Mass Transf. 129, 265–277 (2019)CrossRef Selimefendigil, F.; Oztop, H.F.: Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. Int. J. Heat Mass Transf. 129, 265–277 (2019)CrossRef
24.
Zurück zum Zitat Vahit Corumlu, V.; Ozsoy, A.; Ozturk, M.: Evaluation of heat transfer mechanisms in heat pipe charged with nanofluid. Arab. J. Sci. Eng. 44, 5195–5213 (2019)CrossRef Vahit Corumlu, V.; Ozsoy, A.; Ozturk, M.: Evaluation of heat transfer mechanisms in heat pipe charged with nanofluid. Arab. J. Sci. Eng. 44, 5195–5213 (2019)CrossRef
25.
Zurück zum Zitat Selimefendigil, F.; Oztop, H.F.: Conjugate natural convection in a cavity with a conductive partition and filled with different nanofluids on different sides of the partition. J. Mol. Liq. 216, 67–77 (2016)CrossRef Selimefendigil, F.; Oztop, H.F.: Conjugate natural convection in a cavity with a conductive partition and filled with different nanofluids on different sides of the partition. J. Mol. Liq. 216, 67–77 (2016)CrossRef
26.
Zurück zum Zitat Mezaache, E.H.; Daguenet, M.: Numerical study of evaporation in laminar and turbulent regions of liquid film transfer on an inclined plate. Can. J. Chem. Eng. 78, 994–1005 (2000)CrossRef Mezaache, E.H.; Daguenet, M.: Numerical study of evaporation in laminar and turbulent regions of liquid film transfer on an inclined plate. Can. J. Chem. Eng. 78, 994–1005 (2000)CrossRef
27.
Zurück zum Zitat Sun, H.; Lauriat, G.; Nicolas, X.: Natural convection and wall condensation or evaporation in humid air-filled cavities subjected to wall temperature variations. Int. J. Therm. Sci. 50, 663–679 (2011)CrossRef Sun, H.; Lauriat, G.; Nicolas, X.: Natural convection and wall condensation or evaporation in humid air-filled cavities subjected to wall temperature variations. Int. J. Therm. Sci. 50, 663–679 (2011)CrossRef
28.
Zurück zum Zitat Costa, V.A.F.: Transient natural convection in enclosures filled with humid air, including wall evaporation and condensation. Int. J. Heat Mass Transf. 55, 5479–5494 (2012)CrossRef Costa, V.A.F.: Transient natural convection in enclosures filled with humid air, including wall evaporation and condensation. Int. J. Heat Mass Transf. 55, 5479–5494 (2012)CrossRef
29.
Zurück zum Zitat Zografos, A.I.; Martin, W.A.; Sunderland, J.E.: Equations of properties as a function of temperature for seven fluids. Comput. Methods Appl. Mech. Eng. 61, 177–187 (1987)CrossRefMATH Zografos, A.I.; Martin, W.A.; Sunderland, J.E.: Equations of properties as a function of temperature for seven fluids. Comput. Methods Appl. Mech. Eng. 61, 177–187 (1987)CrossRefMATH
30.
Zurück zum Zitat Butler, J.N.; Brokaw, R.S.: Thermal conductivity of gas mixtures in chemical equilibrium. J. Chem. Phys. 26, 1005–1006 (1957)CrossRef Butler, J.N.; Brokaw, R.S.: Thermal conductivity of gas mixtures in chemical equilibrium. J. Chem. Phys. 26, 1005–1006 (1957)CrossRef
31.
Zurück zum Zitat Wilke, C.R.: A viscosity equation for gas mixtures. J. Chem. Phys. 18, 517–519 (1950)CrossRef Wilke, C.R.: A viscosity equation for gas mixtures. J. Chem. Phys. 18, 517–519 (1950)CrossRef
32.
Zurück zum Zitat Fuller, E.N.; Schettler, P.D.; Giddings, J.C.: New method for prediction of binary gas-phase diffusion coefficients. Ind. Eng. Chem. 58, 18–27 (1966)CrossRef Fuller, E.N.; Schettler, P.D.; Giddings, J.C.: New method for prediction of binary gas-phase diffusion coefficients. Ind. Eng. Chem. 58, 18–27 (1966)CrossRef
33.
Zurück zum Zitat Launder, B.E.; Spalding, D.B.: Mathematical Models of Turbulence. Academic press, Cambridge (1972)MATH Launder, B.E.; Spalding, D.B.: Mathematical Models of Turbulence. Academic press, Cambridge (1972)MATH
34.
Zurück zum Zitat Tominaga, Y.; Stathopoulos, T.: Turbulent Schmidt numbers for CFD analysis with various types of flow field. Atmos. Environ. 41, 8091–8099 (2007)CrossRef Tominaga, Y.; Stathopoulos, T.: Turbulent Schmidt numbers for CFD analysis with various types of flow field. Atmos. Environ. 41, 8091–8099 (2007)CrossRef
35.
Zurück zum Zitat Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)CrossRef Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)CrossRef
Metadaten
Titel
Numerical and Analytical Investigation of the Surface Evaporation Rate of the Different Nanofluids and Optimization Results by Using the RSM Method
verfasst von
Morteza Bayati
Mohsen Tahmasebi Sarvestani
Publikationsdatum
01.11.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 9/2023
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-022-07407-y

Weitere Artikel der Ausgabe 9/2023

Arabian Journal for Science and Engineering 9/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.