Skip to main content

2018 | OriginalPaper | Buchkapitel

Numerical Integration in Arbitrary-Precision Ball Arithmetic

verfasst von : Fredrik Johansson

Erschienen in: Mathematical Software – ICMS 2018

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present an implementation of arbitrary-precision numerical integration with rigorous error bounds in the Arb library. Rapid convergence is ensured for piecewise complex analytic integrals by use of the Petras algorithm, which combines adaptive bisection with adaptive Gaussian quadrature where error bounds are determined via complex magnitudes without evaluating derivatives. The code is general, easy to use, and efficient, often outperforming existing non-rigorous software.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Arb (http://​arblib.​org) is open source (GNU LGPL) software. For documentation and example code related to this paper, see http://​arblib.​org/​acb_​calc.​html.
 
2
Clenshaw-Curtis or double exponential quadrature could be used instead of Gaussian quadrature, but typically require more points for equivalent accuracy. We could also use Taylor series, but this makes supplying f more cumbersome for the user, and computing \(f,f'\ldots ,f^{(n)}\) tends to be more costly than n evaluations of f.
 
3
In benchmark results, we omit the first-time nodes precomputation overhead.
 
4
For example, mpmath provides quadgl for Gaussian quadrature, which is 2–3 times faster on some examples, but its precomputations are prohibitive at high precision.
 
5
An exception is when f has an essential singularity inducing oscillation combined with slow decay. Oscillation with exponential decay is not a problem (as in \(E_4\)\(E_5\)), but integrals like \(\smash {\int _0^1\!\sin (1/x) dx \!=\! \int _1^{\infty } \!\sin (x)/x^2}\) (not benchmarked here) require \(\smash {2^{O(p)}\!}\) work, so we can only hope for 5–10 digits without specialized oscillatory algorithms.
 
6
As a means to improve performance, we note the standard trick of manually changing variables to turn algebraic growth or decay into exponential decay. Indeed, \(x \rightarrow \sinh (x)\) gives \(E_1 = E_3\). Similarly \(x \rightarrow \tanh (x)\) and \(\smash {x \rightarrow e^{-x}}\) can be used in \(E_0\), \(E_2\).
 
7
This works for integrating |f| when f is real, but since \(|\cdot |\) on \(\mathbb {C}\) is not holomorphic, integrating |f| for nonreal f must use direct enclosures, with \(2^{O(p)}\) cost. In that case, the user should instead construct complex-extensible real and imaginary parts \(f = g\!+\!h i\) (e.g. via Taylor polynomials if no closed forms exist) and integrate \(\sqrt{g^2 + h^2}\).
 
Literatur
1.
Zurück zum Zitat Bailey, D.H., Borwein, J.M.: High-precision numerical integration: progress and challenges. J. Symbolic Comput. 46(7), 741–754 (2011)MathSciNetCrossRef Bailey, D.H., Borwein, J.M.: High-precision numerical integration: progress and challenges. J. Symbolic Comput. 46(7), 741–754 (2011)MathSciNetCrossRef
2.
Zurück zum Zitat Cranley, R., Patterson, T.N.L.: On the automatic numerical evaluation of definite integrals. Comput. J. 14(2), 189–198 (1971)MathSciNetCrossRef Cranley, R., Patterson, T.N.L.: On the automatic numerical evaluation of definite integrals. Comput. J. 14(2), 189–198 (1971)MathSciNetCrossRef
4.
Zurück zum Zitat Johansson, F.: Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans. Comput. 66, 1281–1292 (2017)MathSciNetCrossRef Johansson, F.: Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans. Comput. 66, 1281–1292 (2017)MathSciNetCrossRef
6.
Zurück zum Zitat Johansson, F., Mezzarobba, M.: Fast and rigorous arbitrary-precision computation of Gauss-Legendre quadrature nodes and weights (2018). arXiv:1802.03948 Johansson, F., Mezzarobba, M.: Fast and rigorous arbitrary-precision computation of Gauss-Legendre quadrature nodes and weights (2018). arXiv:​1802.​03948
8.
Zurück zum Zitat Petras, K.: Self-validating integration and approximation of piecewise analytic functions. J. Comp. Appl. Math. 145(2), 345–359 (2002)MathSciNetCrossRef Petras, K.: Self-validating integration and approximation of piecewise analytic functions. J. Comp. Appl. Math. 145(2), 345–359 (2002)MathSciNetCrossRef
9.
Zurück zum Zitat Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic. Acta Numerica 19, 287–449 (2010)MathSciNetCrossRef Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic. Acta Numerica 19, 287–449 (2010)MathSciNetCrossRef
Metadaten
Titel
Numerical Integration in Arbitrary-Precision Ball Arithmetic
verfasst von
Fredrik Johansson
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-96418-8_30

Premium Partner