Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 9/2023

17.05.2023 | Research Article-Mechanical Engineering

Numerical Investigation of Heat Transfer Enhancement in Wavy-Walled Tubes Filled With Porous Media

verfasst von: Mahdi Amini, Mohammad Reza Tavakoli, Iman Chitsaz

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 9/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study investigates heat transfer and pressure drop in wavy-walled tubes filled with porous media under local thermal equilibrium (LTE) conditions. A two-equation k-ω SST turbulence model is implemented for the simulations. A Darcy–Brinkman–Forchheimer (DBF) model simulates the flow within porous domains. Based on Nusselt number, friction factor, and performance evaluation criteria (PEC), effective parameters such as wave amplitude, Darcy number, and particle diameter of porous media are investigated. As a result of the porous material addition to the wake region of wavy-walled tubes, the center of recirculation vortexes is shifted upstream, and the vortex intensity is reduced. Vortexes disappear in some cases. In these regions, the local Nusselt number increases due to the convergence of this phenomenon due to the placement of porous material in the divergent section of the wavy-walled tube. The results show that heat transfer and pressure drop variations are related to the Darcy number and the design point should be outside this region. Also, it was found that the Darcy number reduction increased the interaction between porous material and flow and PEC number decreases as shear stress increases in the convergent section. As a result of reducing the size of porous media particles, there is increased collision between fluid and particles, resulting in streamlines conforming to the tube wall and no reverse low. The results reveal that in this article, the maximum PEC number increases to 1.364, which indicates that affordable energy supply and improvement in energy efficiency are available with new ideas.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Reddy, P.S.; Chamkha, A.J.: Soret and Dufour effects on MHD convective flow of Al2O3–water and TiO2–water nanofluids past a stretching sheet in porous media with heat generation/absorption. Adv. Powder Technol. 27(4), 1207–1218 (2016) Reddy, P.S.; Chamkha, A.J.: Soret and Dufour effects on MHD convective flow of Al2O3–water and TiO2–water nanofluids past a stretching sheet in porous media with heat generation/absorption. Adv. Powder Technol. 27(4), 1207–1218 (2016)
2.
Zurück zum Zitat Karbasifar, B.; Akbari, M.; Toghraie, D.: Mixed convection of Water-Aluminum oxide nanofluid in an inclined lid-driven cavity containing a hot elliptical centric cylinder. Int. J. Heat Mass Transf. 116, 1237–1249 (2018) Karbasifar, B.; Akbari, M.; Toghraie, D.: Mixed convection of Water-Aluminum oxide nanofluid in an inclined lid-driven cavity containing a hot elliptical centric cylinder. Int. J. Heat Mass Transf. 116, 1237–1249 (2018)
3.
Zurück zum Zitat Toosi, M.H.; Siavashi, M.: Two-phase mixture numerical simulation of natural convection of nanofluid flow in a cavity partially filled with porous media to enhance heat transfer. J. Mol. Liq. 238, 553–569 (2017) Toosi, M.H.; Siavashi, M.: Two-phase mixture numerical simulation of natural convection of nanofluid flow in a cavity partially filled with porous media to enhance heat transfer. J. Mol. Liq. 238, 553–569 (2017)
4.
Zurück zum Zitat Siavashi, M.; Rostami, A.: Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media. Int. J. Mech. Sci. 133, 689–703 (2017) Siavashi, M.; Rostami, A.: Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media. Int. J. Mech. Sci. 133, 689–703 (2017)
5.
Zurück zum Zitat Siavashi, M.; Karimi, K.; Xiong, Q.; Doranehgard, M.H.: Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder. J. Therm. Anal. Calorim. 137(1), 267–287 (2019) Siavashi, M.; Karimi, K.; Xiong, Q.; Doranehgard, M.H.: Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder. J. Therm. Anal. Calorim. 137(1), 267–287 (2019)
6.
Zurück zum Zitat Maghsoudi, P.; Siavashi, M.: Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity. J. Therm. Anal. Calorim. 135(2), 947–961 (2019) Maghsoudi, P.; Siavashi, M.: Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity. J. Therm. Anal. Calorim. 135(2), 947–961 (2019)
7.
Zurück zum Zitat Saeedi, A.H.; Akbari, M.; Toghraie, D.: An experimental study on rheological behavior of a nanofluid containing oxide nanoparticle and proposing a new correlation. Physica E 99, 285–293 (2018) Saeedi, A.H.; Akbari, M.; Toghraie, D.: An experimental study on rheological behavior of a nanofluid containing oxide nanoparticle and proposing a new correlation. Physica E 99, 285–293 (2018)
8.
Zurück zum Zitat Akhbari, M.; Rahimi, A.; Hatamipour, M.S.: Modeling and experimental study of a triangular channel solar air heater. Appl. Therm. Eng. 170, 114902 (2020) Akhbari, M.; Rahimi, A.; Hatamipour, M.S.: Modeling and experimental study of a triangular channel solar air heater. Appl. Therm. Eng. 170, 114902 (2020)
9.
Zurück zum Zitat Cheraghi, M.H.; Ameri, M.; Shahabadi, M.: Numerical study on the heat transfer enhancement and pressure drop inside deep dimpled tubes. Int. J. Heat Mass Transf. 147, 118845 (2020) Cheraghi, M.H.; Ameri, M.; Shahabadi, M.: Numerical study on the heat transfer enhancement and pressure drop inside deep dimpled tubes. Int. J. Heat Mass Transf. 147, 118845 (2020)
10.
Zurück zum Zitat Dastmalchi, M.; Sheikhzadeh, G.; Arefmanesh, A.: Optimization of micro-finned tubes in double pipe heat exchangers using particle swarm algorithm. Appl. Therm. Eng. 119, 1–9 (2017) Dastmalchi, M.; Sheikhzadeh, G.; Arefmanesh, A.: Optimization of micro-finned tubes in double pipe heat exchangers using particle swarm algorithm. Appl. Therm. Eng. 119, 1–9 (2017)
11.
Zurück zum Zitat Rashad, A.; Armaghani, T.; Chamkha, A.J.; Mansour, M.: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chin. J. Phys. 56(1), 193–211 (2018) Rashad, A.; Armaghani, T.; Chamkha, A.J.; Mansour, M.: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chin. J. Phys. 56(1), 193–211 (2018)
12.
Zurück zum Zitat Mahmoudi, Y.; Karimi, N.: Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition. Int. J. Heat Mass Transf. 68, 161–173 (2014) Mahmoudi, Y.; Karimi, N.: Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition. Int. J. Heat Mass Transf. 68, 161–173 (2014)
13.
Zurück zum Zitat Pourrahmani, H.; Moghimi, M.; Siavashi, M.; Shirbani, M.: Sensitivity analysis and performance evaluation of the PEMFC using wave-like porous ribs. Appl. Therm. Eng. 150, 433–444 (2019) Pourrahmani, H.; Moghimi, M.; Siavashi, M.; Shirbani, M.: Sensitivity analysis and performance evaluation of the PEMFC using wave-like porous ribs. Appl. Therm. Eng. 150, 433–444 (2019)
14.
Zurück zum Zitat Siavashi, M.; Bahrami, H.R.T.; Saffari, H.: Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model. Numerical Heat Transfer, Part A: Appl.. 71(12), 1251–1273 (2017) Siavashi, M.; Bahrami, H.R.T.; Saffari, H.: Numerical investigation of porous rib arrangement on heat transfer and entropy generation of nanofluid flow in an annulus using a two-phase mixture model. Numerical Heat Transfer, Part A: Appl.. 71(12), 1251–1273 (2017)
15.
Zurück zum Zitat Arabpour, A.; Karimipour, A.; Toghraie, D.: The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. J. Therm. Anal. Calorim. 131(2), 1553–1566 (2018) Arabpour, A.; Karimipour, A.; Toghraie, D.: The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. J. Therm. Anal. Calorim. 131(2), 1553–1566 (2018)
16.
Zurück zum Zitat Rush, T.; Newell, T.; Jacobi, A.: An experimental study of flow and heat transfer in sinusoidal wavy passages. Int. J. Heat Mass Transf. 42(9), 1541–1553 (1999) Rush, T.; Newell, T.; Jacobi, A.: An experimental study of flow and heat transfer in sinusoidal wavy passages. Int. J. Heat Mass Transf. 42(9), 1541–1553 (1999)
17.
Zurück zum Zitat Sui, Y.; Teo, C.; Lee, P.S.; Chew, Y.; Shu, C.: Fluid flow and heat transfer in wavy microchannels. Int. J. Heat Mass Transf. 53(13–14), 2760–2772 (2010)MATH Sui, Y.; Teo, C.; Lee, P.S.; Chew, Y.; Shu, C.: Fluid flow and heat transfer in wavy microchannels. Int. J. Heat Mass Transf. 53(13–14), 2760–2772 (2010)MATH
18.
Zurück zum Zitat Laohalertdecha, S.; Wongwises, S.: The effects of corrugation pitch on the condensation heat transfer coefficient and pressure drop of R-134a inside horizontal corrugated tube. Int. J. Heat Mass Transf. 53(13–14), 2924–2931 (2010) Laohalertdecha, S.; Wongwises, S.: The effects of corrugation pitch on the condensation heat transfer coefficient and pressure drop of R-134a inside horizontal corrugated tube. Int. J. Heat Mass Transf. 53(13–14), 2924–2931 (2010)
19.
Zurück zum Zitat Ahmed, H.E.; Fadhil, O.T.; Jehad, M.G.; Alfellag, M.A.: Enhancement of thermal design of pipe filled partially with porous media using eccentric fluid cores. Arab. J. Sci. Eng. 47, 16171 (2022) Ahmed, H.E.; Fadhil, O.T.; Jehad, M.G.; Alfellag, M.A.: Enhancement of thermal design of pipe filled partially with porous media using eccentric fluid cores. Arab. J. Sci. Eng. 47, 16171 (2022)
20.
Zurück zum Zitat Ramgadia, A.G.; Saha, A.K.: Numerical study of fully developed flow and heat transfer in a wavy passage. Int. J. Therm. Sci. 67, 152–166 (2013) Ramgadia, A.G.; Saha, A.K.: Numerical study of fully developed flow and heat transfer in a wavy passage. Int. J. Therm. Sci. 67, 152–166 (2013)
21.
Zurück zum Zitat Pethkool, S.; Eiamsa-Ard, S.; Kwankaomeng, S.; Promvonge, P.: Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube. Int. Commun. Heat Mass Transfer 38(3), 340–347 (2011) Pethkool, S.; Eiamsa-Ard, S.; Kwankaomeng, S.; Promvonge, P.: Turbulent heat transfer enhancement in a heat exchanger using helically corrugated tube. Int. Commun. Heat Mass Transfer 38(3), 340–347 (2011)
22.
Zurück zum Zitat Nauman, M.M.; Sameer, M.; Mehdi, M.; Iqbal, A.; Esa, Z.: Heat Transfer and Pressure Drop in Wavy-Walled Tubes: A Parameter-BASED CFD Study. Fluids. 5(4), 202 (2020) Nauman, M.M.; Sameer, M.; Mehdi, M.; Iqbal, A.; Esa, Z.: Heat Transfer and Pressure Drop in Wavy-Walled Tubes: A Parameter-BASED CFD Study. Fluids. 5(4), 202 (2020)
23.
Zurück zum Zitat Mohamad, A.: Heat transfer enhancements in heat exchangers fitted with porous media Part I: constant wall temperature. Int. J. Therm. Sci. 42(4), 385–395 (2003) Mohamad, A.: Heat transfer enhancements in heat exchangers fitted with porous media Part I: constant wall temperature. Int. J. Therm. Sci. 42(4), 385–395 (2003)
24.
Zurück zum Zitat Maerefat, M.; Mahmoudi, S.Y.; Mazaheri, K.: Numerical simulation of forced convection enhancement in a pipe by porous inserts. Heat Transfer Eng. 32(1), 45–56 (2011) Maerefat, M.; Mahmoudi, S.Y.; Mazaheri, K.: Numerical simulation of forced convection enhancement in a pipe by porous inserts. Heat Transfer Eng. 32(1), 45–56 (2011)
25.
Zurück zum Zitat Huang, P.; Yang, C.; Hwang, J.; Chiu, M.: Enhancement of forced-convection cooling of multiple heated blocks in a channel using porous covers. Int. J. Heat Mass Transf. 48(3–4), 647–664 (2005)MATH Huang, P.; Yang, C.; Hwang, J.; Chiu, M.: Enhancement of forced-convection cooling of multiple heated blocks in a channel using porous covers. Int. J. Heat Mass Transf. 48(3–4), 647–664 (2005)MATH
26.
Zurück zum Zitat Shi, C.; Wang, M.; Yang, J.; Liu, W.; Liu, Z.: Performance analysis and multi-objective optimization for tubes partially filled with gradient porous media. Appl. Therm. Eng. 188, 116530 (2021) Shi, C.; Wang, M.; Yang, J.; Liu, W.; Liu, Z.: Performance analysis and multi-objective optimization for tubes partially filled with gradient porous media. Appl. Therm. Eng. 188, 116530 (2021)
27.
Zurück zum Zitat Mahjoob, S.; Vafai, K.: A synthesis of fluid and thermal transport models for metal foam heat exchangers. Int. J. Heat Mass Transf. 51(15–16), 3701–3711 (2008)MATH Mahjoob, S.; Vafai, K.: A synthesis of fluid and thermal transport models for metal foam heat exchangers. Int. J. Heat Mass Transf. 51(15–16), 3701–3711 (2008)MATH
28.
Zurück zum Zitat Hung, T.-C.; Huang, Y.-X.; Yan, W.-M.: Thermal performance of porous microchannel heat sink: Effects of enlarging channel outlet. Int. Commun. Heat Mass Transfer 48, 86–92 (2013) Hung, T.-C.; Huang, Y.-X.; Yan, W.-M.: Thermal performance of porous microchannel heat sink: Effects of enlarging channel outlet. Int. Commun. Heat Mass Transfer 48, 86–92 (2013)
29.
Zurück zum Zitat Hung, T.-C.; Huang, Y.-X.; Yan, W.-M.: Thermal performance analysis of porous-microchannel heat sinks with different configuration designs. Int. J. Heat Mass Transf. 66, 235–243 (2013) Hung, T.-C.; Huang, Y.-X.; Yan, W.-M.: Thermal performance analysis of porous-microchannel heat sinks with different configuration designs. Int. J. Heat Mass Transf. 66, 235–243 (2013)
30.
Zurück zum Zitat Hung, T.-C.; Yan, W.-M.: Optimization of design parameters for a sandwich-distribution porous-microchannel heat sink. Numerical Heat Transfer, Part A: Applications. 66(3), 229–251 (2014) Hung, T.-C.; Yan, W.-M.: Optimization of design parameters for a sandwich-distribution porous-microchannel heat sink. Numerical Heat Transfer, Part A: Applications. 66(3), 229–251 (2014)
31.
Zurück zum Zitat Shirvan, K.M.; Ellahi, R.; Mirzakhanlari, S.; Mamourian, M.: Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: Numerical simulation and sensitivity analysis of turbulent fluid flow. Appl. Therm. Eng. 109, 761–774 (2016) Shirvan, K.M.; Ellahi, R.; Mirzakhanlari, S.; Mamourian, M.: Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: Numerical simulation and sensitivity analysis of turbulent fluid flow. Appl. Therm. Eng. 109, 761–774 (2016)
32.
Zurück zum Zitat Shirvan, K.M.; Mirzakhanlari, S.; Kalogirou, S.A.; Öztop, H.F.; Mamourian, M.: Heat transfer and sensitivity analysis in a double pipe heat exchanger filled with porous medium. Int. J. Therm. Sci. 121, 124–137 (2017) Shirvan, K.M.; Mirzakhanlari, S.; Kalogirou, S.A.; Öztop, H.F.; Mamourian, M.: Heat transfer and sensitivity analysis in a double pipe heat exchanger filled with porous medium. Int. J. Therm. Sci. 121, 124–137 (2017)
33.
Zurück zum Zitat Chikh, S.; Allouache, N.: Optimal performance of an annular heat exchanger with a porous insert for a turbulent flow. Appl. Therm. Eng. 104, 222–230 (2016) Chikh, S.; Allouache, N.: Optimal performance of an annular heat exchanger with a porous insert for a turbulent flow. Appl. Therm. Eng. 104, 222–230 (2016)
34.
Zurück zum Zitat Lu, W.;Zhao, C.;Tassou, S. Thermal analysis on metal-foam filled heat exchangers. Part I: Metal-foam filled pipes. International journal of heat and mass transfer. 2006;49(15–16):2751–2761. Lu, W.;Zhao, C.;Tassou, S. Thermal analysis on metal-foam filled heat exchangers. Part I: Metal-foam filled pipes. International journal of heat and mass transfer. 2006;49(15–16):2751–2761.
35.
Zurück zum Zitat Yang, K.;Vafai, K. Restrictions on the validity of the thermal conditions at the porous-fluid interface—an exact solution. Journal of Heat transfer. 2011;133(11). Yang, K.;Vafai, K. Restrictions on the validity of the thermal conditions at the porous-fluid interface—an exact solution. Journal of Heat transfer. 2011;133(11).
36.
Zurück zum Zitat Yang, C.; Nakayama, A.; Liu, W.: Heat transfer performance assessment for forced convection in a tube partially filled with a porous medium. Int. J. Therm. Sci. 54, 98–108 (2012) Yang, C.; Nakayama, A.; Liu, W.: Heat transfer performance assessment for forced convection in a tube partially filled with a porous medium. Int. J. Therm. Sci. 54, 98–108 (2012)
37.
Zurück zum Zitat Mahmoudi, Y.; Maerefat, M.: Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition. Int. J. Therm. Sci. 50(12), 2386–2401 (2011) Mahmoudi, Y.; Maerefat, M.: Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition. Int. J. Therm. Sci. 50(12), 2386–2401 (2011)
38.
Zurück zum Zitat Arasteh, H.; Mashayekhi, R.; Ghaneifar, M.; Toghraie, D.; Afrand, M.: Heat transfer enhancement in a counter-flow sinusoidal parallel-plate heat exchanger partially filled with porous media using metal foam in the channels’ divergent sections. J. Therm. Anal. Calorim. 141(5), 1669–1685 (2020) Arasteh, H.; Mashayekhi, R.; Ghaneifar, M.; Toghraie, D.; Afrand, M.: Heat transfer enhancement in a counter-flow sinusoidal parallel-plate heat exchanger partially filled with porous media using metal foam in the channels’ divergent sections. J. Therm. Anal. Calorim. 141(5), 1669–1685 (2020)
39.
Zurück zum Zitat Siavashi, M.; Bahrami, H.R.T.; Aminian, E.: Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using nanofluid with gradient and multi-layered porous foams. Appl. Therm. Eng. 138, 465–474 (2018) Siavashi, M.; Bahrami, H.R.T.; Aminian, E.: Optimization of heat transfer enhancement and pumping power of a heat exchanger tube using nanofluid with gradient and multi-layered porous foams. Appl. Therm. Eng. 138, 465–474 (2018)
40.
Zurück zum Zitat Nazar, R.; Tham, L.; Pop, I.; Ingham, D.: Mixed convection boundary layer flow from a horizontal circular cylinder embedded in a porous medium filled with a nanofluid. Transp. Porous Media 86(2), 517–536 (2011) Nazar, R.; Tham, L.; Pop, I.; Ingham, D.: Mixed convection boundary layer flow from a horizontal circular cylinder embedded in a porous medium filled with a nanofluid. Transp. Porous Media 86(2), 517–536 (2011)
41.
Zurück zum Zitat Mahdavi, M.; Saffar-Avval, M.; Tiari, S.; Mansoori, Z.: Entropy generation and heat transfer numerical analysis in pipes partially filled with porous medium. Int. J. Heat Mass Transf. 79, 496–506 (2014) Mahdavi, M.; Saffar-Avval, M.; Tiari, S.; Mansoori, Z.: Entropy generation and heat transfer numerical analysis in pipes partially filled with porous medium. Int. J. Heat Mass Transf. 79, 496–506 (2014)
42.
Zurück zum Zitat Nield, D.A.;Bejan, A. Convection in porous media. Springer (2006) Nield, D.A.;Bejan, A. Convection in porous media. Springer (2006)
43.
Zurück zum Zitat Alazmi, B.; Vafai, K.: Analysis of variants within the porous media transport models. J Heat Transfer. 122(2), 303–326 (2000) Alazmi, B.; Vafai, K.: Analysis of variants within the porous media transport models. J Heat Transfer. 122(2), 303–326 (2000)
44.
Zurück zum Zitat Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994) Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)
45.
Zurück zum Zitat Bian, Y.; Chen, L.; Zhu, J.; Li, C.: Effects of dimensions on the fluid flow and mass transfer characteristics in wavy-walled tubes for steady flow. Heat Mass Transf. 49(5), 723–731 (2013) Bian, Y.; Chen, L.; Zhu, J.; Li, C.: Effects of dimensions on the fluid flow and mass transfer characteristics in wavy-walled tubes for steady flow. Heat Mass Transf. 49(5), 723–731 (2013)
Metadaten
Titel
Numerical Investigation of Heat Transfer Enhancement in Wavy-Walled Tubes Filled With Porous Media
verfasst von
Mahdi Amini
Mohammad Reza Tavakoli
Iman Chitsaz
Publikationsdatum
17.05.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 9/2023
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-023-07878-7

Weitere Artikel der Ausgabe 9/2023

Arabian Journal for Science and Engineering 9/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.