Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2021

05.01.2021

Numerical Modeling and Experimental Analysis of Water Jet Spot Welding and Friction Stir Spot Welding: A Comparative Study

verfasst von: Behrouz Bagheri, Mahmoud Abbasi, Amin Abdollahzadeh, Ahmad Ostovari Moghaddam

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, a finite element method was implemented to comparatively study the welding of AA6061-T6 aluminum alloy sheets by water jet spot welding and friction stir spot welding processes. The Johnson–Cook (J–C) model was applied to define the mechanical and thermal behaviors of the material during both welding processes. The simulation results showed good agreement with the experimental measurements. The process of jet impact on the flyer plate surface occurred on a short time scale which made it challenging to experimentally study the dynamic of this process. Therefore, a simulation was of great importance to consider this phenomenon. The water jet pressure and velocity, as well as the strain and stress distribution on the flyer plate surface, were thoroughly analyzed. The depression growth during the primary impact of the water jet was also studied. Regarding the FSSW process, mechanical characteristics such as stress and strain distribution, material flow, as well as the force and torque variation on the workpiece were investigated. Finally, the hardness profile and the temperature distribution in the joint area were compared in both welding processes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Mabrouki, K. Raissi, and A. Cornier, Numerical Simulation and Experimental Study of the Interaction Between a Pure High-Velocity Water Jet and Targets: Contribution to Investigate the Decoating Process, Wear, 2000, 239, p 260–273 T. Mabrouki, K. Raissi, and A. Cornier, Numerical Simulation and Experimental Study of the Interaction Between a Pure High-Velocity Water Jet and Targets: Contribution to Investigate the Decoating Process, Wear, 2000, 239, p 260–273
2.
Zurück zum Zitat A. Turgutlu, S.T.S. Al-Hassani, and M. Akyurt, Experimental Investigation of Deformation and Jetting During Impact Spot Welding, Int. J. Impact Eng., 1995, 16, p 789–799 A. Turgutlu, S.T.S. Al-Hassani, and M. Akyurt, Experimental Investigation of Deformation and Jetting During Impact Spot Welding, Int. J. Impact Eng., 1995, 16, p 789–799
3.
Zurück zum Zitat N.K. Bourne, T. Obara, and J.E. Field, The Impact and Penetration of a Water Surface by a Liquid Jet, Proc. R. Soc. Lond. A, 1996, 452, p 1497–1502 N.K. Bourne, T. Obara, and J.E. Field, The Impact and Penetration of a Water Surface by a Liquid Jet, Proc. R. Soc. Lond. A, 1996, 452, p 1497–1502
4.
Zurück zum Zitat J.E. Field and M.B. Lesser, On the Mechanics of High Speed Liquid Jet, Proc. R. Soc. Lond., 1977, A357, p 43–162 J.E. Field and M.B. Lesser, On the Mechanics of High Speed Liquid Jet, Proc. R. Soc. Lond., 1977, A357, p 43–162
5.
Zurück zum Zitat S.S. Cook, Erosion of Water-Hammer, Proc. R. Soc. Lond. Ser. A, 1928, 119, p 418–488 S.S. Cook, Erosion of Water-Hammer, Proc. R. Soc. Lond. Ser. A, 1928, 119, p 418–488
6.
Zurück zum Zitat D.G. Smith and R. Kinslow, Pressure due to high-velocity impact of a water jet, 1975 SESA Spring Meeting heldin Chicago, Ilon May11–16, 1975. D.G. Smith and R. Kinslow, Pressure due to high-velocity impact of a water jet, 1975 SESA Spring Meeting heldin Chicago, Ilon May11–16, 1975.
7.
Zurück zum Zitat J.H. Brunton, High Speed Liquid Impact, Philos. Trans. R. Soc. Lond. A, 1966, 260, p 79–85 J.H. Brunton, High Speed Liquid Impact, Philos. Trans. R. Soc. Lond. A, 1966, 260, p 79–85
8.
Zurück zum Zitat E. Anderheggen and J.F. Renau-Munoz, A Parallel Explicit Solver for Simulating Impact and Penetration of a Three-Dimensional Body into a Solid Substrate, Adv. Eng. Softw., 2000, 31, p 901–911 E. Anderheggen and J.F. Renau-Munoz, A Parallel Explicit Solver for Simulating Impact and Penetration of a Three-Dimensional Body into a Solid Substrate, Adv. Eng. Softw., 2000, 31, p 901–911
9.
Zurück zum Zitat J.R. Assay and M. Shahipoor, High-Pressure Shock Compression of Solids, Springer, New York, 1992, p 8 J.R. Assay and M. Shahipoor, High-Pressure Shock Compression of Solids, Springer, New York, 1992, p 8
10.
Zurück zum Zitat M. Chizari, S.T.S. Al-Hassani, and L.M. Barrett, Experimental and Numerical Study of Water Jet Spot Welding, J. Mater. Process. Technol., 2008, 198, p 213–219 M. Chizari, S.T.S. Al-Hassani, and L.M. Barrett, Experimental and Numerical Study of Water Jet Spot Welding, J. Mater. Process. Technol., 2008, 198, p 213–219
11.
Zurück zum Zitat M. Alitavoli, A. Darvizeh, M. Moghaddam, P. Parghou, and R. Rajabiehfard, Numerical Modeling Based on Coupled Eulerian–Lagrangian Approach and Experimental Investigation of Water Jet Spot Welding Process, Thin-Wall. Struct., 2018, 127, p 617–628 M. Alitavoli, A. Darvizeh, M. Moghaddam, P. Parghou, and R. Rajabiehfard, Numerical Modeling Based on Coupled Eulerian–Lagrangian Approach and Experimental Investigation of Water Jet Spot Welding Process, Thin-Wall. Struct., 2018, 127, p 617–628
12.
Zurück zum Zitat C.H. YuHsu, C.H. ChungLiang, T. LiangTeng, and A. TuNguyen, A Numerical Study on High-Speed Water Jet Impact, Ocean Eng., 2013, 72, p 98–106 C.H. YuHsu, C.H. ChungLiang, T. LiangTeng, and A. TuNguyen, A Numerical Study on High-Speed Water Jet Impact, Ocean Eng., 2013, 72, p 98–106
13.
Zurück zum Zitat F.P. Bowden and J.H. Brunton, The Deformation of Solids by Liquid Impact at Supersonic Speeds, Proc. R. Soc. Lond. A, 1961, 263, p 433–450 F.P. Bowden and J.H. Brunton, The Deformation of Solids by Liquid Impact at Supersonic Speeds, Proc. R. Soc. Lond. A, 1961, 263, p 433–450
14.
Zurück zum Zitat G. D’Urso, Thermo-Mechanical Characterization of Friction Stir Spot Welded AA6060 Sheets: Experimental and FEM Analysis, J. Manuf. Process., 2015, 17, p 108–119 G. D’Urso, Thermo-Mechanical Characterization of Friction Stir Spot Welded AA6060 Sheets: Experimental and FEM Analysis, J. Manuf. Process., 2015, 17, p 108–119
15.
Zurück zum Zitat B. Bagheri, A.A.M. Rizi, M. Abbasi, and M. Givi, Friction Stir Spot Vibration Welding: Improving the Microstructure and Mechanical Properties of Al5083 Joint, Met. Micro. Anal., 2019, 8(5), p 713–725 B. Bagheri, A.A.M. Rizi, M. Abbasi, and M. Givi, Friction Stir Spot Vibration Welding: Improving the Microstructure and Mechanical Properties of Al5083 Joint, Met. Micro. Anal., 2019, 8(5), p 713–725
16.
Zurück zum Zitat O.O. Ojo and E. Taban, Hybrid Multi-response Optimization of Friction Stir Spot Welds: Failure Load, Effective Bonded Size, and Flash Volume as Responses, Sadhana, 2018, 43(6), p 98 O.O. Ojo and E. Taban, Hybrid Multi-response Optimization of Friction Stir Spot Welds: Failure Load, Effective Bonded Size, and Flash Volume as Responses, Sadhana, 2018, 43(6), p 98
18.
Zurück zum Zitat B. Bagheri, M. Abbasi, and R. Hamzeloo, The Investigation into Vibration Effect on Microstructure and Mechanical Characteristics of Friction Stir Spot Vibration Welded Aluminum: Simulation and Experiment, Proc. Inst. Mech. Eng. Part C J. Mater. Des. Appl., 2020, 234(9), p 1809–1822 B. Bagheri, M. Abbasi, and R. Hamzeloo, The Investigation into Vibration Effect on Microstructure and Mechanical Characteristics of Friction Stir Spot Vibration Welded Aluminum: Simulation and Experiment, Proc. Inst. Mech. Eng. Part C J. Mater. Des. Appl., 2020, 234(9), p 1809–1822
19.
Zurück zum Zitat K. Chen, X. Liu, and J. Ni, Thermal–Mechanical Modeling on Friction Stir Spot Welding of Dissimilar Materials Based on Coupled Eulerian–Lagrangian Approach, Int. J. Adv. Manuf. Technol., 2017, 91, p 1697–1707 K. Chen, X. Liu, and J. Ni, Thermal–Mechanical Modeling on Friction Stir Spot Welding of Dissimilar Materials Based on Coupled Eulerian–Lagrangian Approach, Int. J. Adv. Manuf. Technol., 2017, 91, p 1697–1707
20.
Zurück zum Zitat B. Bagheri, M. Abbasi, and M. Givi, Effects of Vibration on Microstructure and Thermal Properties of Friction Stir Spot Welded (FSSW) Aluminum Alloy (Al5083), In. J. Precis. Eng. Manuf., 2019, 20(7), p 1219–1227 B. Bagheri, M. Abbasi, and M. Givi, Effects of Vibration on Microstructure and Thermal Properties of Friction Stir Spot Welded (FSSW) Aluminum Alloy (Al5083), In. J. Precis. Eng. Manuf., 2019, 20(7), p 1219–1227
21.
Zurück zum Zitat X. Liu, S. Lan, and J. Ni, Thermal Mechanical Modeling of the Plunge Stage During Friction-Stir Welding of Dissimilar Al 6061 to TRIP 780 Steel, J. Manuf. Sci. Eng., 2015, 137(5), p 051017 X. Liu, S. Lan, and J. Ni, Thermal Mechanical Modeling of the Plunge Stage During Friction-Stir Welding of Dissimilar Al 6061 to TRIP 780 Steel, J. Manuf. Sci. Eng., 2015, 137(5), p 051017
22.
Zurück zum Zitat Z. Gao, J.T. Niu, F. Krumphals, N. Enzinger, S. Mitsche, and C. Sommitsch, FE Modelling of Microstructure Evolution During Friction Stir Spot Welding in AA6082-T6, Weld World, 2013, 57, p 895–902 Z. Gao, J.T. Niu, F. Krumphals, N. Enzinger, S. Mitsche, and C. Sommitsch, FE Modelling of Microstructure Evolution During Friction Stir Spot Welding in AA6082-T6, Weld World, 2013, 57, p 895–902
23.
Zurück zum Zitat S. RaviSekhar, V. Chittaranjandas, D. Govardhan, and R. Karthikeyan, Effect of Tool Rotation Speed on Friction Stir Spot Welded AA5052-H38 Aluminum Alloy, Mater. Today Proc., 2018, 5, p 5536–5543 S. RaviSekhar, V. Chittaranjandas, D. Govardhan, and R. Karthikeyan, Effect of Tool Rotation Speed on Friction Stir Spot Welded AA5052-H38 Aluminum Alloy, Mater. Today Proc., 2018, 5, p 5536–5543
24.
Zurück zum Zitat S.D. Systèmes, A. Fallis, and D. Techniques, ABAQUS documentation, Abaqus 6.114, 2018. S.D. Systèmes, A. Fallis, and D. Techniques, ABAQUS documentation, Abaqus 6.114, 2018.
25.
Zurück zum Zitat R. Keivani, B. Bagheri, F. Sharifi, M. Ketabchi, and M. Abbasi, Effects of Pin Angle and Preheating on Temperature Distribution during Friction Stir Welding Operation, Trans. Nonferrous Met. Soc. China, 2013, 23(9), p 2708–2713 R. Keivani, B. Bagheri, F. Sharifi, M. Ketabchi, and M. Abbasi, Effects of Pin Angle and Preheating on Temperature Distribution during Friction Stir Welding Operation, Trans. Nonferrous Met. Soc. China, 2013, 23(9), p 2708–2713
26.
Zurück zum Zitat M. Abbasi, B. Bagheri, and R. Keivani, Thermal Analysis of Friction Stir Welding Process and Investigation into Affective Parameters Using Simulation, J. Mech. Sci. Technol., 2015, 29(2), p 861–866 M. Abbasi, B. Bagheri, and R. Keivani, Thermal Analysis of Friction Stir Welding Process and Investigation into Affective Parameters Using Simulation, J. Mech. Sci. Technol., 2015, 29(2), p 861–866
28.
Zurück zum Zitat B.M. Corbett, Numerical Simulations of Target Hole Diameters for Hypervelocity Impacts into Elevated and Room Temperature Bumpers, Int. J. Impact Eng., 2006, 33, p 4311–4440 B.M. Corbett, Numerical Simulations of Target Hole Diameters for Hypervelocity Impacts into Elevated and Room Temperature Bumpers, Int. J. Impact Eng., 2006, 33, p 4311–4440
29.
Zurück zum Zitat D.J. Benson, A Mixture Theory for Contact in Multi-material Eulerian Formulations, Comput. Method. Appl. Mech. Eng., 1997, 140(1), p 59–86 D.J. Benson, A Mixture Theory for Contact in Multi-material Eulerian Formulations, Comput. Method. Appl. Mech. Eng., 1997, 140(1), p 59–86
30.
Zurück zum Zitat G. Cocchetti, M. Pagani, and U. Perego, Selective Mass Scaling for Distorted Solid-Shell Elements in Explicit Dynamics: Optimal Scaling Factor and Stable Time Step Estimate, In. J. Numer.. Methods Eng., 2015, 101, p 700–731 G. Cocchetti, M. Pagani, and U. Perego, Selective Mass Scaling for Distorted Solid-Shell Elements in Explicit Dynamics: Optimal Scaling Factor and Stable Time Step Estimate, In. J. Numer.. Methods Eng., 2015, 101, p 700–731
31.
Zurück zum Zitat D.W. Nicholson, Finite Element Analysis: Thermomechanics of Solids, CRC Press, Boca Raton, 2008 D.W. Nicholson, Finite Element Analysis: Thermomechanics of Solids, CRC Press, Boca Raton, 2008
32.
Zurück zum Zitat ASTM-E3-11, Standard Guide for preparation of metallographic specimens, Annual Book of ASTM Standards, vol. 3.01, American Society for Testing and Materials, USA, 2017. ASTM-E3-11, Standard Guide for preparation of metallographic specimens, Annual Book of ASTM Standards, vol. 3.01, American Society for Testing and Materials, USA, 2017.
33.
Zurück zum Zitat A.O. Moghaddam, M. Ketabchi, and R. Bahrami, Kinetic Grain Growth, Shape Memory and Corrosion Behavior of Two Cu-Based Shape Memory Alloys After Thermomechanical Treatment, Trans. Nonferrous Met. Soc. China, 2013, 23(10), p 2896–2904 A.O. Moghaddam, M. Ketabchi, and R. Bahrami, Kinetic Grain Growth, Shape Memory and Corrosion Behavior of Two Cu-Based Shape Memory Alloys After Thermomechanical Treatment, Trans. Nonferrous Met. Soc. China, 2013, 23(10), p 2896–2904
34.
Zurück zum Zitat A.O. Moghaddam, M. Ketabchi, and Y. Afrasiabi, Accumulative Roll Bonding and Post-deformation Annealing of Cu-Al-Mn Shape Memory Alloy, J. Mater. Eng. Perform., 2014, 23(12), p 4429–4435 A.O. Moghaddam, M. Ketabchi, and Y. Afrasiabi, Accumulative Roll Bonding and Post-deformation Annealing of Cu-Al-Mn Shape Memory Alloy, J. Mater. Eng. Perform., 2014, 23(12), p 4429–4435
35.
Zurück zum Zitat S.A.L. Salem, Some Aspects of Liquid/Solid Interaction at High Speeds, (Ph.D. Thesis), UMIST, 1980. S.A.L. Salem, Some Aspects of Liquid/Solid Interaction at High Speeds, (Ph.D. Thesis), UMIST, 1980.
36.
Zurück zum Zitat B. Bagheri, M. Abbasi, and M. Dadaei, Mechanical Behavior and Microstructure of AA6061-T6 Joints Made by Friction Stir Vibration Welding, J. Mater. Eng. Perform., 2020, 29, p 1165–1175 B. Bagheri, M. Abbasi, and M. Dadaei, Mechanical Behavior and Microstructure of AA6061-T6 Joints Made by Friction Stir Vibration Welding, J. Mater. Eng. Perform., 2020, 29, p 1165–1175
37.
Zurück zum Zitat M. Jafari, M. Abbasi, D. Poursina, A. Gheysarian, and B. Bagheri, Microstructure and mechanical properties of friction stir welded dissimilar steel-copper joint, J. Mech. Sci. Technol., 2017, 31, p 1135–1142 M. Jafari, M. Abbasi, D. Poursina, A. Gheysarian, and B. Bagheri, Microstructure and mechanical properties of friction stir welded dissimilar steel-copper joint, J. Mech. Sci. Technol., 2017, 31, p 1135–1142
38.
Zurück zum Zitat O. Barooni, M. Abbasi, M. Givi, and B. Bagheri, New Method to Improve the Microstructure and Mechanical Properties of Joint Obtained Using FSW, Int. J. Adv. Manuf. Technol., 2017, 93, p 4371–4378 O. Barooni, M. Abbasi, M. Givi, and B. Bagheri, New Method to Improve the Microstructure and Mechanical Properties of Joint Obtained Using FSW, Int. J. Adv. Manuf. Technol., 2017, 93, p 4371–4378
39.
Zurück zum Zitat M. Abbasi, M. Givi, and B. Bagheri, Application of vibration to enhance efficiency of friction stir processing, Trans. Nonferrous. Metal. Soc. China., 2019, 29, p 1393–1400 M. Abbasi, M. Givi, and B. Bagheri, Application of vibration to enhance efficiency of friction stir processing, Trans. Nonferrous. Metal. Soc. China., 2019, 29, p 1393–1400
40.
Zurück zum Zitat B. Bagheri, M. Abbasi, A. Abdollahzadeh, and S.E. Mirsalehi, The Effect of Second Phase Particle Size And Presence Of vibration on AZ91/SiC surface composite layer produced by FSP, Trans. Nonzferrous. Metal. Soc. China., 2020, 30, p 905–916 B. Bagheri, M. Abbasi, A. Abdollahzadeh, and S.E. Mirsalehi, The Effect of Second Phase Particle Size And Presence Of vibration on AZ91/SiC surface composite layer produced by FSP, Trans. Nonzferrous. Metal. Soc. China., 2020, 30, p 905–916
41.
Zurück zum Zitat J. Song, A. Kostka, M. Veehmayer, and D. Raabe, Hierarchical Microstructure of Explosive joints: Example of Titanium to Steel Cladding, Mater. Sci. Eng. A, 2011, 528(6), p 2641–2647 J. Song, A. Kostka, M. Veehmayer, and D. Raabe, Hierarchical Microstructure of Explosive joints: Example of Titanium to Steel Cladding, Mater. Sci. Eng. A, 2011, 528(6), p 2641–2647
42.
Zurück zum Zitat B. Crossland, Explosive Welding of Metals and Its Application, Clarendon Press, Oxford Series on Advanced Manufacturing. Oxford, 1982 B. Crossland, Explosive Welding of Metals and Its Application, Clarendon Press, Oxford Series on Advanced Manufacturing. Oxford, 1982
43.
Zurück zum Zitat S.A.L. Salem and S.T.S. Al-Hassani, Impact spot welding by high speed water jets. In: E.M. Lawrence, P.S. Karl, and M.A. Meyers (Eds.), Metallurgical Applications of Shock Wave and High Strain Rate Phenomena, Marcell-Dekker, New York, Chapter 53, 1986. S.A.L. Salem and S.T.S. Al-Hassani, Impact spot welding by high speed water jets. In: E.M. Lawrence, P.S. Karl, and M.A. Meyers (Eds.), Metallurgical Applications of Shock Wave and High Strain Rate Phenomena, Marcell-Dekker, New York, Chapter 53, 1986.
44.
Zurück zum Zitat A. Dey, S.C. Saha, and K.M. Pandey, Study of Mechanical Properties Change During Friction Stir Spot Welding of Aluminium Alloys, Curr. Trend. Technol. Sci., 2014, 3, p 26–33 A. Dey, S.C. Saha, and K.M. Pandey, Study of Mechanical Properties Change During Friction Stir Spot Welding of Aluminium Alloys, Curr. Trend. Technol. Sci., 2014, 3, p 26–33
45.
Zurück zum Zitat B. Srinivasulu and M. Namish, Friction Stir Spot Welding on Similar Aluminum Alloys Al6082 by Using Different Shape of EN19 and EN31 Profile Tool, Cur. Eng. Sci. Res., 2017, 4, p 8–11 B. Srinivasulu and M. Namish, Friction Stir Spot Welding on Similar Aluminum Alloys Al6082 by Using Different Shape of EN19 and EN31 Profile Tool, Cur. Eng. Sci. Res., 2017, 4, p 8–11
46.
Zurück zum Zitat Y.S. Sato, M. Urata, and H. Kokawa, Parameters Controlling Microstructure and Hardness During Friction Stir Welding of Precipitation-Hardenable Aluminum Alloy 6063, Metal. Mater. Trans. A., 2002, 33, p 625–635 Y.S. Sato, M. Urata, and H. Kokawa, Parameters Controlling Microstructure and Hardness During Friction Stir Welding of Precipitation-Hardenable Aluminum Alloy 6063, Metal. Mater. Trans. A., 2002, 33, p 625–635
47.
Zurück zum Zitat Z.H. Liu, S.H. Ji, and X. Meng, Joining of Magnesium and Aluminum Alloys via Ultrasonic Assisted Friction Stir Welding at Low Temperature, Int. J. Adv. Manuf. Technol., 2018, 97, p 4127–4136 Z.H. Liu, S.H. Ji, and X. Meng, Joining of Magnesium and Aluminum Alloys via Ultrasonic Assisted Friction Stir Welding at Low Temperature, Int. J. Adv. Manuf. Technol., 2018, 97, p 4127–4136
48.
Zurück zum Zitat Z.Y. Ma, Friction Stir Processing: A Review, J. Mater. Process. Technol., 2008, 39A, p 642–658 Z.Y. Ma, Friction Stir Processing: A Review, J. Mater. Process. Technol., 2008, 39A, p 642–658
49.
Zurück zum Zitat J. Li, B. Schneiderman, S.M. Gilbert, A. Vivek, Z.H. Yu, and G. Daehn, Process Characteristics and Interfacial Microstructure in Spot Impact Welding of Titanium to Stainless Steel, J. Manufact. Process., 2020, 50, p 421–429 J. Li, B. Schneiderman, S.M. Gilbert, A. Vivek, Z.H. Yu, and G. Daehn, Process Characteristics and Interfacial Microstructure in Spot Impact Welding of Titanium to Stainless Steel, J. Manufact. Process., 2020, 50, p 421–429
50.
Zurück zum Zitat A. Kapil, T. Lee, A. Vivek, J. Bockbrader, T. Abke, and G. Daehn, Benchmarking Strength and Fatigue Properties of Spot Impact Welds, J. Mater. Process. Technol., 2017, 255, p 219–233 A. Kapil, T. Lee, A. Vivek, J. Bockbrader, T. Abke, and G. Daehn, Benchmarking Strength and Fatigue Properties of Spot Impact Welds, J. Mater. Process. Technol., 2017, 255, p 219–233
51.
Zurück zum Zitat M. Fujimoto, S. Koga, N. Abe, Y.S. Sato, and H. Kokawa, Microstructural Analysis of Stir Zone of Al Alloy Produced by Friction Stir Spot Welding, Sci. Technol. Weld. Join., 2008, 13(7), p 663 M. Fujimoto, S. Koga, N. Abe, Y.S. Sato, and H. Kokawa, Microstructural Analysis of Stir Zone of Al Alloy Produced by Friction Stir Spot Welding, Sci. Technol. Weld. Join., 2008, 13(7), p 663
52.
Zurück zum Zitat M. Awang and V.H. Mucino, Energy Generation During Friction Stir Spot Welding (FSSW) of Al 6061–T6 Plates, Mater. Manuf. Processes, 2010, 25(1–3), p 167 M. Awang and V.H. Mucino, Energy Generation During Friction Stir Spot Welding (FSSW) of Al 6061–T6 Plates, Mater. Manuf. Processes, 2010, 25(1–3), p 167
53.
Zurück zum Zitat B. Bagheri, M. Abbasi, A. Abdollahzadeh, and A.H. Kokabi, A Comparative Study Between Friction Stir Processing and Friction Stir Vibration Processing to Develop Magnesium Surface Nanocomposite, In. J. Min. Met. Mater., 2020, 27, p 1133–1146 B. Bagheri, M. Abbasi, A. Abdollahzadeh, and A.H. Kokabi, A Comparative Study Between Friction Stir Processing and Friction Stir Vibration Processing to Develop Magnesium Surface Nanocomposite, In. J. Min. Met. Mater., 2020, 27, p 1133–1146
54.
Zurück zum Zitat Q. Wang, Z. Zhao, Y. Zhao, K. Yan, C. Liu, and H. Zhang, The Strengthening Mechanism of Spray Forming Al−Zn−Mg−Cu Alloy by Underwater Friction Stir Welding, Mater. Des., 2016, 102, p 91–99 Q. Wang, Z. Zhao, Y. Zhao, K. Yan, C. Liu, and H. Zhang, The Strengthening Mechanism of Spray Forming Al−Zn−Mg−Cu Alloy by Underwater Friction Stir Welding, Mater. Des., 2016, 102, p 91–99
55.
Zurück zum Zitat B. Bagheri, M. Abbasi, and M. Dadaei, Effect of Water Cooling and Vibration on the Performances of Friction-Stir-Welded AA5083 Aluminum Joints, Met. Micro. Anal., 2020, 9, p 33–46 B. Bagheri, M. Abbasi, and M. Dadaei, Effect of Water Cooling and Vibration on the Performances of Friction-Stir-Welded AA5083 Aluminum Joints, Met. Micro. Anal., 2020, 9, p 33–46
56.
Zurück zum Zitat S. Rajakumar and V. Balasubramanian, Correlation Between Weld Nugget Grain Size, Weld Nugget Hardness and Tensile Strength of Friction Stir Welded Commercial Grade Aluminium Alloy Joints, Mater. Des., 2012, 34, p 242–251 S. Rajakumar and V. Balasubramanian, Correlation Between Weld Nugget Grain Size, Weld Nugget Hardness and Tensile Strength of Friction Stir Welded Commercial Grade Aluminium Alloy Joints, Mater. Des., 2012, 34, p 242–251
57.
Zurück zum Zitat M.A. Wahid, A.Z. Khan, and A.N. Siddiquee, Review on Underwater Friction Stir Welding: A Variant of Friction Stir Welding with Great Potential of Improving Joint Properties, Trans. Nonferrous Met. Soc. China, 2018, 28, p 193–219 M.A. Wahid, A.Z. Khan, and A.N. Siddiquee, Review on Underwater Friction Stir Welding: A Variant of Friction Stir Welding with Great Potential of Improving Joint Properties, Trans. Nonferrous Met. Soc. China, 2018, 28, p 193–219
Metadaten
Titel
Numerical Modeling and Experimental Analysis of Water Jet Spot Welding and Friction Stir Spot Welding: A Comparative Study
verfasst von
Behrouz Bagheri
Mahmoud Abbasi
Amin Abdollahzadeh
Ahmad Ostovari Moghaddam
Publikationsdatum
05.01.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05407-3

Weitere Artikel der Ausgabe 2/2021

Journal of Materials Engineering and Performance 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.