Skip to main content
Erschienen in: Engineering with Computers 2/2020

02.02.2019 | Original Article

Numerical shape optimization based on meshless method and stochastic optimization technique

verfasst von: S. D. Daxini, J. M. Prajapati

Erschienen in: Engineering with Computers | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper puts forward a newer approach for structural shape optimization by combining a meshless method (MM), i.e. element-free Galerkin (EFG) method, with swarm intelligence (SI)-based stochastic ‘zero-order’ search technique, i.e. artificial bee colony (ABC), for 2D linear elastic problems. The proposed combination is extremely beneficial in structural shape optimization because MM, when used for structural analysis in shape optimization, eliminates inherent issues of well-known grid-based numerical techniques (i.e. FEM) such as mesh distortion and subsequent remeshing while handling large shape changes, poor accuracy due to discontinuous secondary field variables across element boundaries needing costly post-processing techniques and grid optimization to minimize computational errors. Population-based stochastic optimization technique such as ABC eliminates computational burden, complexity and errors associated with design sensitivity analysis. For design boundary representation, Akima spline interpolation has been used in the present work owing to its enhanced stability and smoothness over cubic spline. The effectiveness, validity and performance of the proposed technique are established through numerical examples of cantilever beam and fillet geometry in 2D linear elasticity for shape optimization with behavior constraints on displacement and von Mises stress. For both these problems, influence of a number of design variables in shape optimization has also been investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wall WA, Frenzel MA, Cyron C (2008) Isogeometric structural shape optimization. Comput Methods Appl Mech Eng 197:2976–2988MathSciNetMATH Wall WA, Frenzel MA, Cyron C (2008) Isogeometric structural shape optimization. Comput Methods Appl Mech Eng 197:2976–2988MathSciNetMATH
2.
Zurück zum Zitat Imam MH (1982) Three-dimensional shape optimization. Int J Numer Methods Eng 18:661–673MATH Imam MH (1982) Three-dimensional shape optimization. Int J Numer Methods Eng 18:661–673MATH
3.
Zurück zum Zitat Zienkiewicz OC, Campbell JS (1973) Shape optimization and sequential linear programming. In: Gallagher RH, Zienkiewicz OC (eds) Optimum structural design. Wiley, New York, pp 109–126 Zienkiewicz OC, Campbell JS (1973) Shape optimization and sequential linear programming. In: Gallagher RH, Zienkiewicz OC (eds) Optimum structural design. Wiley, New York, pp 109–126
4.
Zurück zum Zitat Bhavikatti SS, Ramakrishnan CV (1977) Optimum design of fillets in flat and round tension bars. Proceedings of the ASME, Design Engineering Technical Conference, Chicago, Illinois, 77-DET-45 Bhavikatti SS, Ramakrishnan CV (1977) Optimum design of fillets in flat and round tension bars. Proceedings of the ASME, Design Engineering Technical Conference, Chicago, Illinois, 77-DET-45
5.
Zurück zum Zitat Bhavikatti SS, Ramakrishnan CV (1980) Optimum shape design of rotating disks. Comput Struct 11:397–401MATH Bhavikatti SS, Ramakrishnan CV (1980) Optimum shape design of rotating disks. Comput Struct 11:397–401MATH
6.
Zurück zum Zitat Braibant V, Fleury C (1984) Shape optimal design using B-splines. Comput Methods Appl Mech Eng 44:247–267MATH Braibant V, Fleury C (1984) Shape optimal design using B-splines. Comput Methods Appl Mech Eng 44:247–267MATH
7.
Zurück zum Zitat Annicchiarico W, Cerrolaza M (1999) Finite elements, genetic algorithms and b-splines: a combined technique for shape optimization. Finite Elements Anal Des 33:125–141MATH Annicchiarico W, Cerrolaza M (1999) Finite elements, genetic algorithms and b-splines: a combined technique for shape optimization. Finite Elements Anal Des 33:125–141MATH
8.
Zurück zum Zitat Botkin ME (1982) Shape optimization of plate and shell structures. AIAA J 20(2):268–273 Botkin ME (1982) Shape optimization of plate and shell structures. AIAA J 20(2):268–273
9.
Zurück zum Zitat Wang SY, Sun Y, Gallagher RH (1985) Sensitivity analysis in shape optimization of continuum structures. Comp Struct 20(5):855–867MATH Wang SY, Sun Y, Gallagher RH (1985) Sensitivity analysis in shape optimization of continuum structures. Comp Struct 20(5):855–867MATH
10.
Zurück zum Zitat Belegundu AD, Rajan SD (1988) A shape optimization approach based on natural design variables and shape functions. Comput Methods Appl Mech Eng 66:87–106MATH Belegundu AD, Rajan SD (1988) A shape optimization approach based on natural design variables and shape functions. Comput Methods Appl Mech Eng 66:87–106MATH
11.
Zurück zum Zitat Tortorelli DA (1993) A geometric representation scheme suitable for shape optimization. Mech Struct Mach 21(1):95–121MathSciNet Tortorelli DA (1993) A geometric representation scheme suitable for shape optimization. Mech Struct Mach 21(1):95–121MathSciNet
12.
Zurück zum Zitat Firl M, Wuchner R, Bletzinger KU (2013) Regularization of shape optimization problems using FE-based parametrization. Struct Multidisc Optim 47:507–521MathSciNetMATH Firl M, Wuchner R, Bletzinger KU (2013) Regularization of shape optimization problems using FE-based parametrization. Struct Multidisc Optim 47:507–521MathSciNetMATH
13.
Zurück zum Zitat Stavropoulou E, Hojjat M, Bletzinger KU (2014) In-plane mesh regularization for node-based shape optimization problems. Comput Methods Appl Mech Engrg 275:39–54MathSciNetMATH Stavropoulou E, Hojjat M, Bletzinger KU (2014) In-plane mesh regularization for node-based shape optimization problems. Comput Methods Appl Mech Engrg 275:39–54MathSciNetMATH
14.
Zurück zum Zitat Haftka RT, Grandhi RV (1986) Structural shape optimization: a survey. Comput Methods Appl Mech Eng 57(1):91–106MathSciNetMATH Haftka RT, Grandhi RV (1986) Structural shape optimization: a survey. Comput Methods Appl Mech Eng 57(1):91–106MathSciNetMATH
15.
Zurück zum Zitat Ding Y (1986) Shape optimization of structures: a literature survey. Comput Struct 24(6):985–1004MathSciNetMATH Ding Y (1986) Shape optimization of structures: a literature survey. Comput Struct 24(6):985–1004MathSciNetMATH
16.
Zurück zum Zitat Mackerle J (2003) Topology and shape optimization of structures using FEM and BEM-a bibliography (1999–2001). Finite Elem Anal Des 39:243–253MathSciNetMATH Mackerle J (2003) Topology and shape optimization of structures using FEM and BEM-a bibliography (1999–2001). Finite Elem Anal Des 39:243–253MathSciNetMATH
17.
Zurück zum Zitat Bennett JA, Botkin ME (1985) Structural shape optimization with geometric description and adaptive mesh refinement. AIAA J 23(3):458–464 Bennett JA, Botkin ME (1985) Structural shape optimization with geometric description and adaptive mesh refinement. AIAA J 23(3):458–464
18.
Zurück zum Zitat Kim NH, Choi KK (2005) Structural sensitivity analysis and optimization 1: linear systems. Springer, New York Kim NH, Choi KK (2005) Structural sensitivity analysis and optimization 1: linear systems. Springer, New York
19.
Zurück zum Zitat Lacroix D, Bouillard P (2003) Improved sensitivity analysis by a coupled FE-EFG method. Comput Struct 81:2431–2439 Lacroix D, Bouillard P (2003) Improved sensitivity analysis by a coupled FE-EFG method. Comput Struct 81:2431–2439
20.
Zurück zum Zitat Grindeanu I, Choi KK, Chen JS, Chnag KH (1999) Shape design optimization of Hyperelastic structures using a Meshless method. AIAA J 37(8):990–997 Grindeanu I, Choi KK, Chen JS, Chnag KH (1999) Shape design optimization of Hyperelastic structures using a Meshless method. AIAA J 37(8):990–997
21.
Zurück zum Zitat Diaz AR, Kikuchi N, Taylor JE (1983) A method of grid optimization for finite element methods. Comp Methods Appl Mech Eng 41:29–45MathSciNetMATH Diaz AR, Kikuchi N, Taylor JE (1983) A method of grid optimization for finite element methods. Comp Methods Appl Mech Eng 41:29–45MathSciNetMATH
22.
Zurück zum Zitat Ingber MS, Mitra AK (1986) Grid optimization for the boundary element method. Int J Numer Methods Eng 23:2121–2136MATH Ingber MS, Mitra AK (1986) Grid optimization for the boundary element method. Int J Numer Methods Eng 23:2121–2136MATH
23.
Zurück zum Zitat Bathe KJ (1996) Finite element procedures. Prentice Hall, Englewood CliffsMATH Bathe KJ (1996) Finite element procedures. Prentice Hall, Englewood CliffsMATH
24.
Zurück zum Zitat Najafi AR, Safdaric M, Tortorelli DA, Geubelle PH (2015) A gradient based shape optimization scheme using an interface-enriched generalized FEM. Comput Methods Appl Mech Eng 296:1–17MathSciNetMATH Najafi AR, Safdaric M, Tortorelli DA, Geubelle PH (2015) A gradient based shape optimization scheme using an interface-enriched generalized FEM. Comput Methods Appl Mech Eng 296:1–17MathSciNetMATH
25.
Zurück zum Zitat Kim NH, Chang Y (2005) Eulerian shape design sensitivity analysis and optimization with a fixed grid. Comput Methods Appl Mech Eng 194:3291–3314MathSciNetMATH Kim NH, Chang Y (2005) Eulerian shape design sensitivity analysis and optimization with a fixed grid. Comput Methods Appl Mech Eng 194:3291–3314MathSciNetMATH
26.
Zurück zum Zitat Gracia MJ, Gonzalez CA (2004) Shape optimization of continuum structures via evolution strategies and fixed grid finite element analysis. Struct Multidisc Optim 26:92–98 Gracia MJ, Gonzalez CA (2004) Shape optimization of continuum structures via evolution strategies and fixed grid finite element analysis. Struct Multidisc Optim 26:92–98
27.
Zurück zum Zitat Garcia-Ruiz MJ, Steven GP (1999) Fixed grid finite element in elasticity optimization. Eng Comput 16(2):145–164MATH Garcia-Ruiz MJ, Steven GP (1999) Fixed grid finite element in elasticity optimization. Eng Comput 16(2):145–164MATH
28.
Zurück zum Zitat Hughes TJR, Cottrell JA, BazilevsY (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetMATH Hughes TJR, Cottrell JA, BazilevsY (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetMATH
29.
Zurück zum Zitat Fubeder D, Simeon B, Vuong AV (2015) Fundamental aspects of shape optimization in the context of isogeometric analysis. Comput Methods Appl Mech Eng 286:313–331MathSciNetMATH Fubeder D, Simeon B, Vuong AV (2015) Fundamental aspects of shape optimization in the context of isogeometric analysis. Comput Methods Appl Mech Eng 286:313–331MathSciNetMATH
30.
Zurück zum Zitat Ha SH, Choi KK, Cho S (2010) Numerical method for shape optimization using T-spline based isogeometric method. Struct Multidisc Optim 42:417–428MATH Ha SH, Choi KK, Cho S (2010) Numerical method for shape optimization using T-spline based isogeometric method. Struct Multidisc Optim 42:417–428MATH
31.
Zurück zum Zitat Qian X (2010) Full analytical sensitivities in NURBS based isogeometric shape optimization. Comput Methods Appl Mech Eng 199:2059–2071MathSciNetMATH Qian X (2010) Full analytical sensitivities in NURBS based isogeometric shape optimization. Comput Methods Appl Mech Eng 199:2059–2071MathSciNetMATH
32.
Zurück zum Zitat Bobaru F, Rachakonda S (2004) Boundary layer in shape optimization of convective fins using a meshless approach. Int J Numer Methods Eng 60(7):1215–1236MATH Bobaru F, Rachakonda S (2004) Boundary layer in shape optimization of convective fins using a meshless approach. Int J Numer Methods Eng 60(7):1215–1236MATH
33.
Zurück zum Zitat Belytschko TY, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256MathSciNetMATH Belytschko TY, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256MathSciNetMATH
34.
Zurück zum Zitat Mota Soares CA, Radrigues HC, Choi KK (1984) Shape optimal structural design using boundary elements and minimum compliance techniques. ASME 84-DET-57 Mota Soares CA, Radrigues HC, Choi KK (1984) Shape optimal structural design using boundary elements and minimum compliance techniques. ASME 84-DET-57
35.
Zurück zum Zitat Mota Soares CA, Rodrigues HC, Oliveira Faria LM, Haug EJ (1984) Optimization of the geometry of shafts using boundary elements. ASME J Mech Trans Autom Des 106(2):199–203 Mota Soares CA, Rodrigues HC, Oliveira Faria LM, Haug EJ (1984) Optimization of the geometry of shafts using boundary elements. ASME J Mech Trans Autom Des 106(2):199–203
36.
Zurück zum Zitat Zhang J, Gong S, Huang Y, Qiu A, Chen R (2008) Structural dynamic shape optimization and sensitivity analysis based on RKPM. Struct Multidisc Optim 36:307–317MathSciNetMATH Zhang J, Gong S, Huang Y, Qiu A, Chen R (2008) Structural dynamic shape optimization and sensitivity analysis based on RKPM. Struct Multidisc Optim 36:307–317MathSciNetMATH
37.
Zurück zum Zitat Kim NH, Choi KK, Botkin ME (2003) Numerical method for shape optimization using meshless method. Struct Multidisc Optim 24:418–429 Kim NH, Choi KK, Botkin ME (2003) Numerical method for shape optimization using meshless method. Struct Multidisc Optim 24:418–429
38.
Zurück zum Zitat Bobaru F, Mukherjee S (2001) Shape sensitivity analysis and shape optimization in planar using the element-free Galerkin method. Comput Methods Appl Mech Eng 190:4319–4937MATH Bobaru F, Mukherjee S (2001) Shape sensitivity analysis and shape optimization in planar using the element-free Galerkin method. Comput Methods Appl Mech Eng 190:4319–4937MATH
39.
Zurück zum Zitat Phan AV, Mukherjee S, Mayer JRR (1998) Stresses, stress sensitivities and shape optimization in two-dimensional linear elasticity by the boundary contour method. Int J Numer Methods Eng 42:1391:1407MathSciNetMATH Phan AV, Mukherjee S, Mayer JRR (1998) Stresses, stress sensitivities and shape optimization in two-dimensional linear elasticity by the boundary contour method. Int J Numer Methods Eng 42:1391:1407MathSciNetMATH
40.
Zurück zum Zitat Zhao Z (1991) In shape design sensitivity analysis and optimization using the boundary element method. Springer, New YorkMATH Zhao Z (1991) In shape design sensitivity analysis and optimization using the boundary element method. Springer, New YorkMATH
41.
Zurück zum Zitat Bobaru F, Mukherjee S (2002) Meshless approach to shape optimization of linear thermoelastic solids. Int J Numer Methods Eng 53:765–796 Bobaru F, Mukherjee S (2002) Meshless approach to shape optimization of linear thermoelastic solids. Int J Numer Methods Eng 53:765–796
42.
Zurück zum Zitat Hou JW, Sheen JS, Chuang CH (1992) Shape-sensitivity analysis and design optimization of linear, thermoelastic solids. AIAA J 30(2):528–537MATH Hou JW, Sheen JS, Chuang CH (1992) Shape-sensitivity analysis and design optimization of linear, thermoelastic solids. AIAA J 30(2):528–537MATH
43.
Zurück zum Zitat Bobaru F, Rachakonda S (2004) Optimal shape profiles for cooling fins of high and low conductivity. Int J Heat Mass Transf 47(23):4953–4966MATH Bobaru F, Rachakonda S (2004) Optimal shape profiles for cooling fins of high and low conductivity. Int J Heat Mass Transf 47(23):4953–4966MATH
44.
Zurück zum Zitat Bobaru F, Rachakonda S (2006) E(FG)2: a new fixed-grid shape optimization method based on the element-free Galerkin mesh-free analysis: taking large steps in shape optimization. Struct Multidiscip Optim 32:215–228MathSciNetMATH Bobaru F, Rachakonda S (2006) E(FG)2: a new fixed-grid shape optimization method based on the element-free Galerkin mesh-free analysis: taking large steps in shape optimization. Struct Multidiscip Optim 32:215–228MathSciNetMATH
45.
Zurück zum Zitat Zou W, Zhou JX, Zhang ZQ, Li Q (2007) A truly meshless method based on partition of unity quadrature for shape optimization of continua. Comput Mech 39:357–365MathSciNetMATH Zou W, Zhou JX, Zhang ZQ, Li Q (2007) A truly meshless method based on partition of unity quadrature for shape optimization of continua. Comput Mech 39:357–365MathSciNetMATH
46.
Zurück zum Zitat Zhang ZQ, Zhou JX, Zhou N, Wang XM, Zhang L (2005) Shape optimization using reproducing kernel particle method and an enriched genetic algorithm. Comput Methods Appl Mech Eng 194:4048–4070MathSciNetMATH Zhang ZQ, Zhou JX, Zhou N, Wang XM, Zhang L (2005) Shape optimization using reproducing kernel particle method and an enriched genetic algorithm. Comput Methods Appl Mech Eng 194:4048–4070MathSciNetMATH
47.
Zurück zum Zitat Banichuk NV, Serra M, Sinitsyn A (2006) Shape optimization of quasi-brittle axisymmetric shells by genetic algorithm. Comput Struct 84:1925–1933 Banichuk NV, Serra M, Sinitsyn A (2006) Shape optimization of quasi-brittle axisymmetric shells by genetic algorithm. Comput Struct 84:1925–1933
48.
Zurück zum Zitat Muc A, Gurba W (2001) Genetic algorithms and finite element analysis in optimization of composite structures. Compos Struct 54:275–281 Muc A, Gurba W (2001) Genetic algorithms and finite element analysis in optimization of composite structures. Compos Struct 54:275–281
49.
Zurück zum Zitat Sonmez FO (2007) Shape optimization of 2D structures using simulated annealing. Comput Methods Appl Mech Eng 196:3279–3299MATH Sonmez FO (2007) Shape optimization of 2D structures using simulated annealing. Comput Methods Appl Mech Eng 196:3279–3299MATH
50.
Zurück zum Zitat Shim PY, Manoochehri S (1997) Generating optimal configurations in structural design using simulated annealing. Int J Numer methods Eng 40:1053–1069MATH Shim PY, Manoochehri S (1997) Generating optimal configurations in structural design using simulated annealing. Int J Numer methods Eng 40:1053–1069MATH
51.
Zurück zum Zitat Karaboga D (2005) An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report-TR06, Erciyes University Karaboga D (2005) An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report-TR06, Erciyes University
52.
Zurück zum Zitat Karaboga D, Akay B (2009) A comparative study of Artificial Bee Colony algorithm. Appl Math Comput 214:108–132MathSciNetMATH Karaboga D, Akay B (2009) A comparative study of Artificial Bee Colony algorithm. Appl Math Comput 214:108–132MathSciNetMATH
53.
Zurück zum Zitat Sonmez M (2011) Discrete optimum design of truss structures using artificial bee colony algorithm. Struct Multidisc Optim 43:85–97 Sonmez M (2011) Discrete optimum design of truss structures using artificial bee colony algorithm. Struct Multidisc Optim 43:85–97
54.
Zurück zum Zitat Park JY, Han SY (2013) Application of artificial bee colony algorithm to topology optimization for dynamic stiffness problems. Comput Math Appl 66:1879–1891MathSciNetMATH Park JY, Han SY (2013) Application of artificial bee colony algorithm to topology optimization for dynamic stiffness problems. Comput Math Appl 66:1879–1891MathSciNetMATH
55.
Zurück zum Zitat Zhu T, Atlure SN (1998) A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput Mech 21:211–222MathSciNetMATH Zhu T, Atlure SN (1998) A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Comput Mech 21:211–222MathSciNetMATH
56.
Zurück zum Zitat Lu YY, Belytschko T, Gu L (1994) A new implementation of the element free Galerkin method. Comput Methods Appl Mech Eng 113(3–4):397–414MathSciNetMATH Lu YY, Belytschko T, Gu L (1994) A new implementation of the element free Galerkin method. Comput Methods Appl Mech Eng 113(3–4):397–414MathSciNetMATH
57.
Zurück zum Zitat Krongauz Y, Belytschko T (1996) Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput Methods Appl Mech Eng 131(1–2):133–145MathSciNetMATH Krongauz Y, Belytschko T (1996) Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput Methods Appl Mech Eng 131(1–2):133–145MathSciNetMATH
58.
Zurück zum Zitat Beissel S, Belytschko T (1996) Nodal integration of the element-free Galerkin method. Comput Methods Appl Mech Eng 139:49–71MathSciNetMATH Beissel S, Belytschko T (1996) Nodal integration of the element-free Galerkin method. Comput Methods Appl Mech Eng 139:49–71MathSciNetMATH
59.
Zurück zum Zitat Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50:435–466MATH Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50:435–466MATH
60.
Zurück zum Zitat Carpinteri A, Ferro G, Ventura G (2002) The partition of unity quadrature in meshless methods. Int J Numer Methods Eng 54:987MathSciNetMATH Carpinteri A, Ferro G, Ventura G (2002) The partition of unity quadrature in meshless methods. Int J Numer Methods Eng 54:987MathSciNetMATH
61.
Zurück zum Zitat DuflotM HungND (2002) A truly meshless Galerkin method based on a moving least squares quadrature. Commun Numer Methods Eng 18:441–449MathSciNet DuflotM HungND (2002) A truly meshless Galerkin method based on a moving least squares quadrature. Commun Numer Methods Eng 18:441–449MathSciNet
62.
Zurück zum Zitat Zuohiui P (2000) Treatment of point loads in element free Galerkin method (EFGM). Commun Numer Meth Engrg 16:335–341 Zuohiui P (2000) Treatment of point loads in element free Galerkin method (EFGM). Commun Numer Meth Engrg 16:335–341
63.
Zurück zum Zitat Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2012) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artf Intell Rev 42:21–57 Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2012) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artf Intell Rev 42:21–57
64.
Zurück zum Zitat Karaboga D, Basturk B (2007) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8:687–697MATH Karaboga D, Basturk B (2007) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8:687–697MATH
65.
Zurück zum Zitat Tereshko V (2000) Reaction-diffusion model of a honeybee colony’s foraging behaviour. In: Schoenauer M et al (eds) Parallel problem solving from nature VI. Lecture Notes in Computer Science, vol 1917. Springer, Berlin, pp 807–816 Tereshko V (2000) Reaction-diffusion model of a honeybee colony’s foraging behaviour. In: Schoenauer M et al (eds) Parallel problem solving from nature VI. Lecture Notes in Computer Science, vol 1917. Springer, Berlin, pp 807–816
66.
Zurück zum Zitat Jordehi AR (2014) A review on constraint handling strategies in particle swarm optimization. Neural Comput Appl 26:1265–1275 Jordehi AR (2014) A review on constraint handling strategies in particle swarm optimization. Neural Comput Appl 26:1265–1275
67.
Zurück zum Zitat Akima H (1970) A new method of interpolation and smooth curve fitting based on local procedures. J Assoc Comput Mach 17(4):589–602MATH Akima H (1970) A new method of interpolation and smooth curve fitting based on local procedures. J Assoc Comput Mach 17(4):589–602MATH
68.
Zurück zum Zitat Wang C, Yu T, Shao G, Nguyen TT, Bui TQ (2018) Shape optimization of structures with cutouts by an efficient approach based on XIGA and chaotic particle swarm optimization. Eur J Mech A Solids 74:176–187MathSciNetMATH Wang C, Yu T, Shao G, Nguyen TT, Bui TQ (2018) Shape optimization of structures with cutouts by an efficient approach based on XIGA and chaotic particle swarm optimization. Eur J Mech A Solids 74:176–187MathSciNetMATH
69.
Zurück zum Zitat Lian H, Kerfriden P, Bordas SPA (2016) Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity. Int J Numer Meth Eng 106:972–1017MathSciNetMATH Lian H, Kerfriden P, Bordas SPA (2016) Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity. Int J Numer Meth Eng 106:972–1017MathSciNetMATH
70.
Zurück zum Zitat Sun SH, Yu TT, Nguyen TT, Atroshchenko E, Bui TQ (2018) Structural shape optimization by IGABEM and particle swarm optimization algorithm. Eng Anal Bound Elem 88:26–40MathSciNetMATH Sun SH, Yu TT, Nguyen TT, Atroshchenko E, Bui TQ (2018) Structural shape optimization by IGABEM and particle swarm optimization algorithm. Eng Anal Bound Elem 88:26–40MathSciNetMATH
Metadaten
Titel
Numerical shape optimization based on meshless method and stochastic optimization technique
verfasst von
S. D. Daxini
J. M. Prajapati
Publikationsdatum
02.02.2019
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 2/2020
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-019-00714-3

Weitere Artikel der Ausgabe 2/2020

Engineering with Computers 2/2020 Zur Ausgabe

Neuer Inhalt