Skip to main content
Erschienen in: Microsystem Technologies 8/2019

25.01.2019 | Technical Paper

Numerical simulation of a novel microfluidic electroosmotic micromixer with Cantor fractal structure

verfasst von: Zeyang Wu, Xueye Chen

Erschienen in: Microsystem Technologies | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we design a novel low voltage of electroosmotic micromixer with fractal structure. Because of the influence of high voltage on electrode and solution, we propose an electroosmotic micromixer of low voltage. In order to optimize the electrode position, we design the Cantor fractal according to Cantor principle, and arrange the electrode pairs on the fractal. Then we study the mixing effect of the electrode pairs length on the mixing performance, the effect of the electrode position and the effect of fractal electrode group spacing on the mixing efficiency. When the electroosmotic micromixer has three electrode groups at alternating voltage of 5 V and alternating frequency of 8 Hz, the best mixing efficiency can reach 95.2% in one second. We call this micromixer Cantor fractal electroosmotic micromixer (CFEM). At the same Re, the mixing efficiency of CFEM is higher than the electrodeless micromixer 50%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmed F, Kim KY (2017) Parametric study of an electroosmotic micromixer with heterogeneous charged surface patches. Micromachines 8(7):199CrossRef Ahmed F, Kim KY (2017) Parametric study of an electroosmotic micromixer with heterogeneous charged surface patches. Micromachines 8(7):199CrossRef
Zurück zum Zitat Chau JLH, Leung AYL, Yeung KL (2003) Zeolite micromembranes. Lab Chip 3(2):53–55CrossRef Chau JLH, Leung AYL, Yeung KL (2003) Zeolite micromembranes. Lab Chip 3(2):53–55CrossRef
Zurück zum Zitat Chen Xueye, Li Tiechuan (2017) A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel. Chem Eng J 313:1406–1414CrossRef Chen Xueye, Li Tiechuan (2017) A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel. Chem Eng J 313:1406–1414CrossRef
Zurück zum Zitat Chen X, Zhang L (2017a) A review on micromixers actuated with magnetic nanomaterials. Microchimica Acta 184(10):3639–3649 (3(3)) CrossRef Chen X, Zhang L (2017a) A review on micromixers actuated with magnetic nanomaterials. Microchimica Acta 184(10):3639–3649 (3(3)) CrossRef
Zurück zum Zitat Chen X, Zhao Z (2017) Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer. Analytica Chimica Acta 964:142–149 (7(3)) CrossRef Chen X, Zhao Z (2017) Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer. Analytica Chimica Acta 964:142–149 (7(3)) CrossRef
Zurück zum Zitat Chen H, Zhang Y, Mezic I et al (2003) Numerical simulation of an electroosmotic micromixer. ASME Publ FED 259:653–658 Chen H, Zhang Y, Mezic I et al (2003) Numerical simulation of an electroosmotic micromixer. ASME Publ FED 259:653–658
Zurück zum Zitat Chen X, Shen J, Hu Z, Huo X (2016a) Manufacturing methods and applications of membranes in microfluidics. Biomed Microdevice 18(6):1–13CrossRef Chen X, Shen J, Hu Z, Huo X (2016a) Manufacturing methods and applications of membranes in microfluidics. Biomed Microdevice 18(6):1–13CrossRef
Zurück zum Zitat Chen X, Li T, Zeng H, Hu Z, Fu B (2016b) Numerical and experimental investigation on micromixers with serpentine microchannels. Int J Heat Mass Transf 98:131–140CrossRef Chen X, Li T, Zeng H, Hu Z, Fu B (2016b) Numerical and experimental investigation on micromixers with serpentine microchannels. Int J Heat Mass Transf 98:131–140CrossRef
Zurück zum Zitat Chen X, Li T, Shen J et al (2016c) Fractal design of microfluidics and nanofluidics—a review. Chemom Intell Lab Syst 155:19–25CrossRef Chen X, Li T, Shen J et al (2016c) Fractal design of microfluidics and nanofluidics—a review. Chemom Intell Lab Syst 155:19–25CrossRef
Zurück zum Zitat Chen X, Li T, Shen J, Hu Z (2017) From structures, packaging to application: a system-level review for micro direct methanol fuel cell. Renew Sustain Energy Rev 80:669–678 (6(2)) CrossRef Chen X, Li T, Shen J, Hu Z (2017) From structures, packaging to application: a system-level review for micro direct methanol fuel cell. Renew Sustain Energy Rev 80:669–678 (6(2)) CrossRef
Zurück zum Zitat Forouzanfar S, Talebzadeh N, Zargari S et al (2015) The effect of microchannel width on mixing efficiency of microfluidic electroosmotic mixer. In: Robotics and mechatronics (ICROM), 2015 3rd RSI international conference on. IEEE, 2015, pp 629–634 Forouzanfar S, Talebzadeh N, Zargari S et al (2015) The effect of microchannel width on mixing efficiency of microfluidic electroosmotic mixer. In: Robotics and mechatronics (ICROM), 2015 3rd RSI international conference on. IEEE, 2015, pp 629–634
Zurück zum Zitat Green NG, Ramos A, González A et al (2000) Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys Rev E 61(4):4011CrossRef Green NG, Ramos A, González A et al (2000) Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys Rev E 61(4):4011CrossRef
Zurück zum Zitat Lu LH, Ryu KS, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. Microelectromech Syst J 11(5):462–469CrossRef Lu LH, Ryu KS, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. Microelectromech Syst J 11(5):462–469CrossRef
Zurück zum Zitat Lu P, Liu X, Zhang C (2017) Electroosmotic flow in a rough nanochannel with surface roughness characterized by fractal Cantor. Micromachines 8(6):190CrossRef Lu P, Liu X, Zhang C (2017) Electroosmotic flow in a rough nanochannel with surface roughness characterized by fractal Cantor. Micromachines 8(6):190CrossRef
Zurück zum Zitat Nimafar M, Viktorov V, Martinelli M (2012) Experimental investigation of split and recombination micromixer in confront with basic T-and O-type micromixers. Int J Mech Appl 2(5):61–69 Nimafar M, Viktorov V, Martinelli M (2012) Experimental investigation of split and recombination micromixer in confront with basic T-and O-type micromixers. Int J Mech Appl 2(5):61–69
Zurück zum Zitat Niu X, Wen W, Liu L et al (2006) Active microfluidic mixer chip. Appl Phys Lett 88(15):153508CrossRef Niu X, Wen W, Liu L et al (2006) Active microfluidic mixer chip. Appl Phys Lett 88(15):153508CrossRef
Zurück zum Zitat Oddy MH, Santiago JG, Mikkelsen JC (2001) Electrokinetic instability micromixing. Anal Chem 73(24):5822–5832CrossRef Oddy MH, Santiago JG, Mikkelsen JC (2001) Electrokinetic instability micromixing. Anal Chem 73(24):5822–5832CrossRef
Zurück zum Zitat Sasaki N, Kitamori T, Kim HB (2010) Experimental and theoretical characterization of an AC electroosmotic micromixer. Anal Sci 26(7):815–819CrossRef Sasaki N, Kitamori T, Kim HB (2010) Experimental and theoretical characterization of an AC electroosmotic micromixer. Anal Sci 26(7):815–819CrossRef
Zurück zum Zitat Shi YZ, Xiong S, Zhang Y et al (2018a) Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat Commun 9(1):815CrossRef Shi YZ, Xiong S, Zhang Y et al (2018a) Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat Commun 9(1):815CrossRef
Zurück zum Zitat Shi Y, Xiong S, Chin LK et al (2018b) Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Sci Adv 4(1):eaao0773CrossRef Shi Y, Xiong S, Chin LK et al (2018b) Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Sci Adv 4(1):eaao0773CrossRef
Zurück zum Zitat Simonnet C, Groisman A (2005) Chaotic mixing in a steady flow in a microchannel. Phys Rev Lett 94(13):134501CrossRef Simonnet C, Groisman A (2005) Chaotic mixing in a steady flow in a microchannel. Phys Rev Lett 94(13):134501CrossRef
Zurück zum Zitat Yin Z (2018) Rapid prototyping of PET microfluidic chips by laser ablation and water-soaking bonding method. Micro Nano Lett 13(9):1302–1305CrossRef Yin Z (2018) Rapid prototyping of PET microfluidic chips by laser ablation and water-soaking bonding method. Micro Nano Lett 13(9):1302–1305CrossRef
Zurück zum Zitat Yin Z, Zou H (2017) Multilayer patterning technique for micro-and nanofluidic chip fabrication. Microfluid Nanofluid 21(12):174CrossRef Yin Z, Zou H (2017) Multilayer patterning technique for micro-and nanofluidic chip fabrication. Microfluid Nanofluid 21(12):174CrossRef
Zurück zum Zitat Yin Z, Cheng E, Zou H (2018) Fast microfluidic chip fabrication technique by laser erosion and sticky tape assist bonding technique. J Nanosci Nanotechnol 18(6):4082–4086CrossRef Yin Z, Cheng E, Zou H (2018) Fast microfluidic chip fabrication technique by laser erosion and sticky tape assist bonding technique. J Nanosci Nanotechnol 18(6):4082–4086CrossRef
Zurück zum Zitat Yoon MS, Kim BJ, Sung HJ (2008) Pumping and mixing in a microchannel using AC asymmetric electrode arrays. Int J Heat Fluid Flow 29(1):269–280CrossRef Yoon MS, Kim BJ, Sung HJ (2008) Pumping and mixing in a microchannel using AC asymmetric electrode arrays. Int J Heat Fluid Flow 29(1):269–280CrossRef
Zurück zum Zitat Zadeh HF (2005) Experimental validation of flow and mass transport in an electrically-excited micromixer. Wissenschaftliche Berichte FZKA 7152 Zadeh HF (2005) Experimental validation of flow and mass transport in an electrically-excited micromixer. Wissenschaftliche Berichte FZKA 7152
Zurück zum Zitat Zhou T, Wang H, Shi L et al (2016) An enhanced electroosmotic micromixer with an efficient asymmetric lateral structure. Micromachines 7(12):218CrossRef Zhou T, Wang H, Shi L et al (2016) An enhanced electroosmotic micromixer with an efficient asymmetric lateral structure. Micromachines 7(12):218CrossRef
Zurück zum Zitat Zhou T, Ge J, Shi L et al (2018a) Dielectrophoretic choking phenomenon of a deformable particle in a converging-diverging microchannel. Electrophoresis 39(4):590–596CrossRef Zhou T, Ge J, Shi L et al (2018a) Dielectrophoretic choking phenomenon of a deformable particle in a converging-diverging microchannel. Electrophoresis 39(4):590–596CrossRef
Zurück zum Zitat Zhou T, Deng Y, Zhao H et al (2018b) The mechanism of size-based particle separation by dielectrophoresis in the viscoelastic flows. J Fluids Eng 140(9):091302CrossRef Zhou T, Deng Y, Zhao H et al (2018b) The mechanism of size-based particle separation by dielectrophoresis in the viscoelastic flows. J Fluids Eng 140(9):091302CrossRef
Metadaten
Titel
Numerical simulation of a novel microfluidic electroosmotic micromixer with Cantor fractal structure
verfasst von
Zeyang Wu
Xueye Chen
Publikationsdatum
25.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 8/2019
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04311-8

Weitere Artikel der Ausgabe 8/2019

Microsystem Technologies 8/2019 Zur Ausgabe

Neuer Inhalt