Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 2/2024

28.02.2024 | Original Research Article

Numerical Simulation of Droplet Splashing Behavior in Steelmaking Converter Based on VOF-to-DPM Hybrid Model and AMR Technique

verfasst von: Jiankun Sun, Jiangshan Zhang, Rui Jiang, Xiaoming Feng, Qing Liu

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Droplet splashing behavior caused by the top blowing supersonic jets impacting the liquid metal surface significantly affects the decarburization efficiency and refractory erosion during the basic oxygen furnace (BOF) steelmaking process. However, simulating the mass and size of splashing droplets is challenging because the droplet size differs by multiple orders of magnitude from the molten bath. Herein, a hybrid model (VOF-to-DPM) coupling the volume of fluid model (VOF) and discrete phase model (DPM) was combined with the adaptive mesh refinement (AMR) technique to successfully achieve high-resolution and quantitative capture of splashing droplets. The simulation results are in good agreement with the droplet splashing rate calculated by the theoretical formula based on the Blowing number (NB) within the allowable error range. The generation mechanisms of splashing droplets caused by single-hole and multiple-hole jets impacting the liquid surface were clarified. Furthermore, the effects of oxygen lance height and top blowing flow rate on the total droplet mass, mass and percentage of droplets sprayed on the furnace wall, and the droplet size were also investigated. It was revealed that with the decrease of the oxygen lance height, the total droplet mass increases and then decreases, and the droplet size increases. As the top blowing flow rate increases, the total mass and size of droplets both tend to increase. The proportion of droplets sprayed on the furnace wall increases sequentially when the impact cavities are in the penetrating mode, splashing mode, and quasi-dimpling mode. Moreover, the relationship between the cavity morphology and the droplet splashing was quantitatively characterized. As the modified cavity shape index (Icm) increases, the droplet splashing mass increases then decreases and finally increases. The change in cavity mode is the main factor affecting the droplet splashing behavior.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Q. Liu, W.Y. Chen, L. Hu, H.B. Xie, and X. Fu: Phys. Fluids, 2015, vol. 27(8), p. 082106.ADSCrossRef Q. Liu, W.Y. Chen, L. Hu, H.B. Xie, and X. Fu: Phys. Fluids, 2015, vol. 27(8), p. 082106.ADSCrossRef
2.
Zurück zum Zitat M.A. Mendez, A. Gosset, and J.M. Buchlin: Exp. Therm. Fluid Sci., 2019, vol. 106, pp. 48–67.CrossRef M.A. Mendez, A. Gosset, and J.M. Buchlin: Exp. Therm. Fluid Sci., 2019, vol. 106, pp. 48–67.CrossRef
3.
Zurück zum Zitat D.B. Villaverde, A. Gosset, and M.A. Mendez: Phys. Fluids, 2021, vol. 33(6), p. 062114.ADSCrossRef D.B. Villaverde, A. Gosset, and M.A. Mendez: Phys. Fluids, 2021, vol. 33(6), p. 062114.ADSCrossRef
4.
Zurück zum Zitat H.M.J.M. Wedershoven, C.W.J. Berendsen, J.C.H. Zeegers, and A.A. Darhuber: Phys. Rev. Appl., 2015, vol. 3(2), p. 024005.ADSCrossRef H.M.J.M. Wedershoven, C.W.J. Berendsen, J.C.H. Zeegers, and A.A. Darhuber: Phys. Rev. Appl., 2015, vol. 3(2), p. 024005.ADSCrossRef
5.
Zurück zum Zitat C.W.J. Berendsen, J.C.H. Zeegers, and A.A. Darhuber: J. Colloid Interface Sci., 2013, vol. 407, pp. 505–15.ADSPubMedCrossRef C.W.J. Berendsen, J.C.H. Zeegers, and A.A. Darhuber: J. Colloid Interface Sci., 2013, vol. 407, pp. 505–15.ADSPubMedCrossRef
6.
Zurück zum Zitat L.L. Cao, Y.N. Wang, Q. Liu, and X.M. Feng: ISIJ Int., 2018, vol. 58(4), pp. 573–84.CrossRef L.L. Cao, Y.N. Wang, Q. Liu, and X.M. Feng: ISIJ Int., 2018, vol. 58(4), pp. 573–84.CrossRef
7.
Zurück zum Zitat M. Lv, S.P. Chen, L.Z. Yang, and G.S. Wei: Metals, 2022, vol. 12(11), p. 1918.CrossRef M. Lv, S.P. Chen, L.Z. Yang, and G.S. Wei: Metals, 2022, vol. 12(11), p. 1918.CrossRef
8.
Zurück zum Zitat B.K. Rout, G. Brooks, M.A. Rhamdhani, Z.S. Li, F.N.H. Schrama, and A. Overbosch: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1022–33.ADSCrossRef B.K. Rout, G. Brooks, M.A. Rhamdhani, Z.S. Li, F.N.H. Schrama, and A. Overbosch: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1022–33.ADSCrossRef
9.
Zurück zum Zitat B. Zhang, K. Chen, R.F. Wang, C.J. Liu, and M.F. Jiang: Metals, 2019, vol. 9(4), p. 409.CrossRef B. Zhang, K. Chen, R.F. Wang, C.J. Liu, and M.F. Jiang: Metals, 2019, vol. 9(4), p. 409.CrossRef
10.
Zurück zum Zitat W. Kleppe and F. Oeters: Archiv für das Eisenhüttenwesen, 1977, vol. 48(3), pp. 139–43.CrossRef W. Kleppe and F. Oeters: Archiv für das Eisenhüttenwesen, 1977, vol. 48(3), pp. 139–43.CrossRef
11.
Zurück zum Zitat B. Deo and R. Boom: Fundamentals of Steelmaking Metallurgy, Prentice Hall International, London, 1993, pp. 45–46. B. Deo and R. Boom: Fundamentals of Steelmaking Metallurgy, Prentice Hall International, London, 1993, pp. 45–46.
12.
Zurück zum Zitat H.Y. Hwang and G.A. Irons: Metall. Mater. Trans. B, 2012, vol. 43B(2), pp. 302–15.ADSCrossRef H.Y. Hwang and G.A. Irons: Metall. Mater. Trans. B, 2012, vol. 43B(2), pp. 302–15.ADSCrossRef
13.
Zurück zum Zitat Subagyo, G.A. Brooks, K.S. Coley, and G.A. Irons: ISIJ Int., 2003, vol. 43(7), pp. 983–89. Subagyo, G.A. Brooks, K.S. Coley, and G.A. Irons: ISIJ Int., 2003, vol. 43(7), pp. 983–89.
14.
Zurück zum Zitat M. Alam, J. Naser, G. Brooks, and A. Fontana: ISIJ Int., 2012, vol. 52(6), pp. 1026–35.CrossRef M. Alam, J. Naser, G. Brooks, and A. Fontana: ISIJ Int., 2012, vol. 52(6), pp. 1026–35.CrossRef
15.
16.
17.
Zurück zum Zitat M.M. Li, Q. Li, S.B. Kuang, and Z.S. Zou: Ind. Eng. Chem. Res., 2016, vol. 55(12), pp. 3630–40.CrossRef M.M. Li, Q. Li, S.B. Kuang, and Z.S. Zou: Ind. Eng. Chem. Res., 2016, vol. 55(12), pp. 3630–40.CrossRef
18.
Zurück zum Zitat N.A. Molloy: J. Iron Steel Inst, 1970, vol. 20(8), pp. 943–50. N.A. Molloy: J. Iron Steel Inst, 1970, vol. 20(8), pp. 943–50.
19.
Zurück zum Zitat M.A. Barron, D.Y. Medina, and J. Reyes: World J. Eng. Technol., 2021, vol. 9(4), pp. 793–803.CrossRef M.A. Barron, D.Y. Medina, and J. Reyes: World J. Eng. Technol., 2021, vol. 9(4), pp. 793–803.CrossRef
20.
Zurück zum Zitat T. Tanaka and K. Okane: Tetsu-to-Hagané, 1988, vol. 74(8), pp. 1593–1600.CrossRef T. Tanaka and K. Okane: Tetsu-to-Hagané, 1988, vol. 74(8), pp. 1593–1600.CrossRef
21.
22.
23.
Zurück zum Zitat M.J. Luomala, T.M.J. Fabritius, E.O. Virtanen, T.P. Siivola, T.L.J. Fabritius, H. Tenkku, and J.J. Harkki: ISIJ Int., 2002, vol. 42(11), pp. 1219–24.CrossRef M.J. Luomala, T.M.J. Fabritius, E.O. Virtanen, T.P. Siivola, T.L.J. Fabritius, H. Tenkku, and J.J. Harkki: ISIJ Int., 2002, vol. 42(11), pp. 1219–24.CrossRef
24.
Zurück zum Zitat T. Haas, A. Ringel, V.V. Visuri, M. Eickhoff, and H. Pfeifer: Steel Res. Int., 2019, vol. 90(9), p. 1900177.CrossRef T. Haas, A. Ringel, V.V. Visuri, M. Eickhoff, and H. Pfeifer: Steel Res. Int., 2019, vol. 90(9), p. 1900177.CrossRef
25.
Zurück zum Zitat T. Fabritius, P. Mure, E. Virtanen, P. Hannula, M. Luomala, and J. Härkki: Ironmak. Steelmak., 2002, vol. 29(1), pp. 29–35.CrossRef T. Fabritius, P. Mure, E. Virtanen, P. Hannula, M. Luomala, and J. Härkki: Ironmak. Steelmak., 2002, vol. 29(1), pp. 29–35.CrossRef
26.
Zurück zum Zitat M.J. Luomala, T.M.J. Fabritius, and J.J. Härkki: ISIJ Int., 2004, vol. 44(5), pp. 809–16.CrossRef M.J. Luomala, T.M.J. Fabritius, and J.J. Härkki: ISIJ Int., 2004, vol. 44(5), pp. 809–16.CrossRef
27.
Zurück zum Zitat S. Amano, S. Sato, Y. Takahashi, and N. Kikuchi: Eng. Rep., 2021, vol. 3(12), p. 12406.CrossRef S. Amano, S. Sato, Y. Takahashi, and N. Kikuchi: Eng. Rep., 2021, vol. 3(12), p. 12406.CrossRef
28.
Zurück zum Zitat S.C. Koria and K.W. Lange: Metall. Trans. B, 1984, vol. 15(1), pp. 109–16.CrossRef S.C. Koria and K.W. Lange: Metall. Trans. B, 1984, vol. 15(1), pp. 109–16.CrossRef
29.
Zurück zum Zitat M.M. Li, Q. Li, Z.S. Zou, and B.K. Li: JOM, 2019, vol. 71(2), pp. 729–36.CrossRef M.M. Li, Q. Li, Z.S. Zou, and B.K. Li: JOM, 2019, vol. 71(2), pp. 729–36.CrossRef
30.
Zurück zum Zitat J.K. Sun, J.S. Zhang, R. Jiang, X.M. Feng, and Q. Liu: Steel Res. Int., 2023, vol. 94(1), p. 2200532.CrossRef J.K. Sun, J.S. Zhang, R. Jiang, X.M. Feng, and Q. Liu: Steel Res. Int., 2023, vol. 94(1), p. 2200532.CrossRef
31.
Zurück zum Zitat M. Lv, H. Li, T.C. Lin, K. Xie, and K. Xue: Steel Res. Int., 2021, vol. 92(10), p. 2100103.CrossRef M. Lv, H. Li, T.C. Lin, K. Xie, and K. Xue: Steel Res. Int., 2021, vol. 92(10), p. 2100103.CrossRef
32.
Zurück zum Zitat W. Jin, J. Xiao, H.X. Ren, C.H. Li, Q.J. Zheng, and Z.B. Tong: Powder Technol., 2022, vol. 407, p. 117622.CrossRef W. Jin, J. Xiao, H.X. Ren, C.H. Li, Q.J. Zheng, and Z.B. Tong: Powder Technol., 2022, vol. 407, p. 117622.CrossRef
33.
Zurück zum Zitat J.F. Zhao, W. Lin, P.B. Li, W. Chu, Y.H. Tong, and W.S. Nie: Acta Astronaut., 2021, vol. 183, pp. 23–28.ADSCrossRef J.F. Zhao, W. Lin, P.B. Li, W. Chu, Y.H. Tong, and W.S. Nie: Acta Astronaut., 2021, vol. 183, pp. 23–28.ADSCrossRef
34.
Zurück zum Zitat M.D. Martino, D. Ahirwal, and P.L. Maffettone: Phys. Fluids, 2022, vol. 34(9), p. 9318.CrossRef M.D. Martino, D. Ahirwal, and P.L. Maffettone: Phys. Fluids, 2022, vol. 34(9), p. 9318.CrossRef
35.
Zurück zum Zitat C. Lvoll, M.H. Sun, X.X. Chen, H.L. Zhao, Y.L. Liu, and H.X. Yin: Metall Mater. Trans. B, 2023, vol. 54B(2), pp. 807–22.ADS C. Lvoll, M.H. Sun, X.X. Chen, H.L. Zhao, Y.L. Liu, and H.X. Yin: Metall Mater. Trans. B, 2023, vol. 54B(2), pp. 807–22.ADS
36.
Zurück zum Zitat L.M. Li, W.S. Xu, X.J. Li, X. Sun, G.J. Yang, and Z.C. Zhu: JOM, 2023, vol. 75(5), pp. 1357–70.ADSCrossRef L.M. Li, W.S. Xu, X.J. Li, X. Sun, G.J. Yang, and Z.C. Zhu: JOM, 2023, vol. 75(5), pp. 1357–70.ADSCrossRef
37.
Zurück zum Zitat Y.B. Liu, J. Yang, and Z.Q. Lin: Metall. Mater. Trans. B, 2022, vol. 53B(4), pp. 2030–50.ADSCrossRef Y.B. Liu, J. Yang, and Z.Q. Lin: Metall. Mater. Trans. B, 2022, vol. 53B(4), pp. 2030–50.ADSCrossRef
38.
Zurück zum Zitat D. Stefanitsis, P. Koukouvinis, N. Nikolopoulos, and M. Gavaises: J. Energy Eng., 2021, vol. 147(1), p. 04020077.CrossRef D. Stefanitsis, P. Koukouvinis, N. Nikolopoulos, and M. Gavaises: J. Energy Eng., 2021, vol. 147(1), p. 04020077.CrossRef
39.
Zurück zum Zitat S.K. Sharma, J.W. Hlinka, and D.W. Kern: Iron. Steelmak., 1977, vol. 4(7), pp. 7–18. S.K. Sharma, J.W. Hlinka, and D.W. Kern: Iron. Steelmak., 1977, vol. 4(7), pp. 7–18.
40.
42.
43.
44.
Zurück zum Zitat Ansys. Ansys Fluent user's guide, Release 2021R1. Southpointe, Canonsburg, ANSYS Inc, 2021. Ansys. Ansys Fluent user's guide, Release 2021R1. Southpointe, Canonsburg, ANSYS Inc, 2021.
45.
Zurück zum Zitat Ansys. Ansys Fluent Theory Guide, Release 2021R1. Southpointe, Canonsburg, ANSYS Inc, 2021. Ansys. Ansys Fluent Theory Guide, Release 2021R1. Southpointe, Canonsburg, ANSYS Inc, 2021.
46.
Zurück zum Zitat Z.L. Li and D.Q. Cang: Steel Res. Int., 2017, vol. 88(4), p. 1600209.CrossRef Z.L. Li and D.Q. Cang: Steel Res. Int., 2017, vol. 88(4), p. 1600209.CrossRef
47.
Zurück zum Zitat Z.H. Sheng, L.H. Feng, K. Liu, B. Yang, and L.Z. Kong: Metall. Res. Technol., 2021, vol. 118(1), p. 114.CrossRef Z.H. Sheng, L.H. Feng, K. Liu, B. Yang, and L.Z. Kong: Metall. Res. Technol., 2021, vol. 118(1), p. 114.CrossRef
48.
Zurück zum Zitat J.K. Sun, J.S. Zhang, W.H. Lin, X.M. Feng, and Q. Liu: Metals, 2022, vol. 12(1), p. 117.CrossRef J.K. Sun, J.S. Zhang, W.H. Lin, X.M. Feng, and Q. Liu: Metals, 2022, vol. 12(1), p. 117.CrossRef
49.
Zurück zum Zitat D.W. Stanton and C.J. Rutland: Int. J. Heat Mass Transfer, 1998, vol. 41(20), pp. 3037–54.CrossRef D.W. Stanton and C.J. Rutland: Int. J. Heat Mass Transfer, 1998, vol. 41(20), pp. 3037–54.CrossRef
50.
51.
Zurück zum Zitat V. Cullinan, D, Morton, J. Liow, and N. Gray: 21st Australasian Chemical Engineering Conf, Australia, 1993, p. 1. V. Cullinan, D, Morton, J. Liow, and N. Gray: 21st Australasian Chemical Engineering Conf, Australia, 1993, p. 1.
52.
53.
Zurück zum Zitat J.K. Sun, J.S. Zhang, W.H. Lin, L.L. Cao, X.M. Feng, and Q. Liu: Steel Res. Int., 2021, vol. 92(9), p. 2100179.CrossRef J.K. Sun, J.S. Zhang, W.H. Lin, L.L. Cao, X.M. Feng, and Q. Liu: Steel Res. Int., 2021, vol. 92(9), p. 2100179.CrossRef
54.
Zurück zum Zitat J. Martinsson and D. Sichen: ISIJ Int., 2019, vol. 59(1), pp. 46–50.CrossRef J. Martinsson and D. Sichen: ISIJ Int., 2019, vol. 59(1), pp. 46–50.CrossRef
55.
Zurück zum Zitat C. Cicutti, M. Valdez, T. Perez, R. Donayo, and J. Petroni: Lat. Am. Appl. Res., 2002, vol. 32(3), pp. 237–40. C. Cicutti, M. Valdez, T. Perez, R. Donayo, and J. Petroni: Lat. Am. Appl. Res., 2002, vol. 32(3), pp. 237–40.
Metadaten
Titel
Numerical Simulation of Droplet Splashing Behavior in Steelmaking Converter Based on VOF-to-DPM Hybrid Model and AMR Technique
verfasst von
Jiankun Sun
Jiangshan Zhang
Rui Jiang
Xiaoming Feng
Qing Liu
Publikationsdatum
28.02.2024
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 2/2024
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-024-03024-2

Weitere Artikel der Ausgabe 2/2024

Metallurgical and Materials Transactions B 2/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.