Skip to main content
Erschienen in: Journal of Iron and Steel Research International 2/2023

06.08.2022 | Original Paper

Numerical simulation of flow characteristics of side-bottom combined blowing in iron bath reactor

verfasst von: Yi-bo He, Wen-ke Guo, Yi-hong Li, Guang-ming Liu, Xin Cui

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 2/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A numerical model of an iron bath smelting reduction furnace with side-bottom combined blowing was established to study the influence of blowing arrangements on the stirring effect of the molten pool, and the accuracy of numerical simulation was verified by water model experiment. By comparing the flow field of molten pool with single nozzle, double nozzles (symmetrical and asymmetrical), and four nozzles (symmetrical and asymmetrical), the proportion of dead zone, average turbulent kinetic energy, and mixing time, the results show that asymmetrical bottom blowing is better than symmetrical bottom blowing, and the effect of double nozzles bottom blowing was better than that of four nozzles bottom blowing. The mixing effect is the worst under the condition of single nozzle. When the bottom blowing is asymmetrical with double nozzles, the mixing time is the shortest. Under the condition of double nozzles asymmetrical bottom blowing, when the insertion angle and depth of side lance are larger and deeper, the velocity streamline of molten slag layer is denser and the value is larger; meanwhile, the reflux of molten iron layer is larger, the proportion of dead zone is smaller, and the whole molten pool is fully stirred. When the insertion depth of the side lance is deeper, the gas holdup in the molten pool is greater and the stirring of the molten pool is more intense, while the insertion angle has little effect on the gas holdup. By comparing the influence of different side blowing conditions on the slag layer, it is found that the slag layer is divided into two layers by double-layer side lance, with the critical surface of the slag layer at about 200–260 mm from the bottom, and the insertion depth of the lower side lance has a greater influence on the layering of the slag.
Literatur
[2]
Zurück zum Zitat X.L. Zhou, S. Pu, N.B. Liu, IOP Conf. Ser.: Mater. Sci. Eng. 768 (2020) 062001. X.L. Zhou, S. Pu, N.B. Liu, IOP Conf. Ser.: Mater. Sci. Eng. 768 (2020) 062001.
[3]
Zurück zum Zitat H.T. Wang, W. Zhao, M.S. Chu, C. Feng, Z.G. Liu, J. Tang, J. Iron Steel Res. Int. 24 (2017) 751–769.CrossRef H.T. Wang, W. Zhao, M.S. Chu, C. Feng, Z.G. Liu, J. Tang, J. Iron Steel Res. Int. 24 (2017) 751–769.CrossRef
[5]
Zurück zum Zitat T.Y. Huang, D. Maruoka, T. Murakami, E. Kasai, ISIJ Int. 59 (2019) 1982–1990.CrossRef T.Y. Huang, D. Maruoka, T. Murakami, E. Kasai, ISIJ Int. 59 (2019) 1982–1990.CrossRef
[6]
[7]
Zurück zum Zitat S.L. Wu, B. Su, X.L. Liu, M.Y. Kou, Ironmak. Steelmak. 45 (2018) 50–57.CrossRef S.L. Wu, B. Su, X.L. Liu, M.Y. Kou, Ironmak. Steelmak. 45 (2018) 50–57.CrossRef
[8]
Zurück zum Zitat D.D. Zhou, S.S. Cheng, Y.S. Wang, X. Jiang, Ironmak. Steelmak. 44 (2017) 714–720.CrossRef D.D. Zhou, S.S. Cheng, Y.S. Wang, X. Jiang, Ironmak. Steelmak. 44 (2017) 714–720.CrossRef
[9]
Zurück zum Zitat S.L. Wu, J. Xu, S.D. Yang, Q. Zhou, L.H. Zhang, ISIJ Int. 50 (2010) 1032–1039.CrossRef S.L. Wu, J. Xu, S.D. Yang, Q. Zhou, L.H. Zhang, ISIJ Int. 50 (2010) 1032–1039.CrossRef
[10]
Zurück zum Zitat P.P. Kumar, D. Gupta, T.K. Naha, S.S. Gupta, Ironmak. Steelmak. 33 (2006) 293–298.CrossRef P.P. Kumar, D. Gupta, T.K. Naha, S.S. Gupta, Ironmak. Steelmak. 33 (2006) 293–298.CrossRef
[11]
Zurück zum Zitat P.P. Kumar, L.M. Garg, S.S. Gupta, Ironmak. Steelmak. 33 (2006) 29–33.CrossRef P.P. Kumar, L.M. Garg, S.S. Gupta, Ironmak. Steelmak. 33 (2006) 29–33.CrossRef
[12]
Zurück zum Zitat H.M. Zhang, Z.Y. Zhou, A.B. Yu, S.Y. Kim, S.K. Jung, Powder Technol. 314 (2017) 641–648.CrossRef H.M. Zhang, Z.Y. Zhou, A.B. Yu, S.Y. Kim, S.K. Jung, Powder Technol. 314 (2017) 641–648.CrossRef
[13]
Zurück zum Zitat K. Meijer, C. Zeilstra, C. Teerhuis, M. Ouwehand, J. van der Stel, Trans. Indian Inst. Met. 66 (2013) 475–481.CrossRef K. Meijer, C. Zeilstra, C. Teerhuis, M. Ouwehand, J. van der Stel, Trans. Indian Inst. Met. 66 (2013) 475–481.CrossRef
[14]
Zurück zum Zitat M.Y. Kou, S.L. Wu, W. Shen, K.P. Du, L.H. Zhang, J. Sun, ISIJ Int. 53 (2013) 2080–2089.CrossRef M.Y. Kou, S.L. Wu, W. Shen, K.P. Du, L.H. Zhang, J. Sun, ISIJ Int. 53 (2013) 2080–2089.CrossRef
[15]
Zurück zum Zitat N. Wang, S. Yu, C.H. Huang, Z.S. Zou, Chin. J. Process Eng. 9 (2009) No. z1, 359–363. N. Wang, S. Yu, C.H. Huang, Z.S. Zou, Chin. J. Process Eng. 9 (2009) No. z1, 359–363.
[16]
Zurück zum Zitat B. Zhang, S. Niu, W.B. Chen, W.C. Li, F.T. Chen, T. Li, L.S. Liang, X. Hong, Adv. Mater. Res. 721 (2013) 164–168.CrossRef B. Zhang, S. Niu, W.B. Chen, W.C. Li, F.T. Chen, T. Li, L.S. Liang, X. Hong, Adv. Mater. Res. 721 (2013) 164–168.CrossRef
[17]
Zurück zum Zitat V. Panjkovic, J. Truelove, O. Ostrovski, Appl. Math. Model. 26 (2002) 203–221.CrossRef V. Panjkovic, J. Truelove, O. Ostrovski, Appl. Math. Model. 26 (2002) 203–221.CrossRef
[18]
Zurück zum Zitat H. Katayama, T. Ohno, M. Yamauchi, M. Matsuo, T. Kawamura, T. Ibaraki, ISIJ Int. 32 (1992) 95–101.CrossRef H. Katayama, T. Ohno, M. Yamauchi, M. Matsuo, T. Kawamura, T. Ibaraki, ISIJ Int. 32 (1992) 95–101.CrossRef
[19]
[20]
Zurück zum Zitat M. Lei, Z.Y. Wang, J.Y. Zhang, W.L. Cheng, S.B. Zheng, B. Wang, X. Hong, Chin. J. Process Eng. 9 (2009) No. z1, 420–425. M. Lei, Z.Y. Wang, J.Y. Zhang, W.L. Cheng, S.B. Zheng, B. Wang, X. Hong, Chin. J. Process Eng. 9 (2009) No. z1, 420–425.
[21]
Zurück zum Zitat Z.Y. Wang, J.Y. Zhang, S.B. Zheng, B. Wang, M. Lei, X. Hong, Chin. J. Process Eng. 9 (2009) No. z1, 36–40. Z.Y. Wang, J.Y. Zhang, S.B. Zheng, B. Wang, M. Lei, X. Hong, Chin. J. Process Eng. 9 (2009) No. z1, 36–40.
[22]
Zurück zum Zitat D.Y. Yin, W.L. Cheng, J.Y. Xie, K.F. Feng, B. Wang, J.Y. Zhang, S.B. Zheng, X. Hong, Chin. J. Process Eng. 10 (2010) 1066–1070. D.Y. Yin, W.L. Cheng, J.Y. Xie, K.F. Feng, B. Wang, J.Y. Zhang, S.B. Zheng, X. Hong, Chin. J. Process Eng. 10 (2010) 1066–1070.
[23]
Zurück zum Zitat W.L. Cheng, D.Y. Yin, K.F. Feng, B. Wang, J.Y. Zhang, S.B. Zheng, X. Hong, Chin. J. Process Eng. 10 (2010) No. z1, 189–194. W.L. Cheng, D.Y. Yin, K.F. Feng, B. Wang, J.Y. Zhang, S.B. Zheng, X. Hong, Chin. J. Process Eng. 10 (2010) No. z1, 189–194.
[24]
Zurück zum Zitat D.Y. Wang, W.Z. Jiang, J.M. Zhu, J.M. Hua, S.B. Wang, in: Proceedings of the 11th CSM Steel Congress, Beijing, China, 2017, pp. 263–267. D.Y. Wang, W.Z. Jiang, J.M. Zhu, J.M. Hua, S.B. Wang, in: Proceedings of the 11th CSM Steel Congress, Beijing, China, 2017, pp. 263–267.
[25]
Zurück zum Zitat L.C. Zhong, X.B. Zhou, Y.X. Zhu, B.Y. Chen, B.C. Huang, X.F. Zeng, J. Mater. Metall. 10 (2011) 241–243+248. L.C. Zhong, X.B. Zhou, Y.X. Zhu, B.Y. Chen, B.C. Huang, X.F. Zeng, J. Mater. Metall. 10 (2011) 241–243+248.
[26]
[27]
Zurück zum Zitat Y. Liu, H.T. Bai, H.P. Liu, M. Ersson, P.G. Jönsson, Y. Gan, Metals 9 (2019) 1136.CrossRef Y. Liu, H.T. Bai, H.P. Liu, M. Ersson, P.G. Jönsson, Y. Gan, Metals 9 (2019) 1136.CrossRef
[28]
Zurück zum Zitat D. Mazumdar, P. Dhandapani, R. Sarvanakumar, ISIJ Int. 57 (2017) 286–295.CrossRef D. Mazumdar, P. Dhandapani, R. Sarvanakumar, ISIJ Int. 57 (2017) 286–295.CrossRef
[29]
Zurück zum Zitat L.J. Yao, R. Zhu, K. Dong, G.S. Wei, F. Zhao, Y.X. Tang, Ironmak. Steelmak. 48 (2021) 180–190.CrossRef L.J. Yao, R. Zhu, K. Dong, G.S. Wei, F. Zhao, Y.X. Tang, Ironmak. Steelmak. 48 (2021) 180–190.CrossRef
[30]
Zurück zum Zitat X.B. Zhou, Y. Liu, P.Y. Ni, S.H. Peng, Steel Res. Int. 92 (2021) 2000334.CrossRef X.B. Zhou, Y. Liu, P.Y. Ni, S.H. Peng, Steel Res. Int. 92 (2021) 2000334.CrossRef
[31]
Zurück zum Zitat Y.B. He, Study on slag–iron bath smelting reduction process for alumina-rich iron ore processing, Northeastern University, Shenyang, China, 2016. Y.B. He, Study on slag–iron bath smelting reduction process for alumina-rich iron ore processing, Northeastern University, Shenyang, China, 2016.
[32]
Zurück zum Zitat C.Z. Li, Y.B. He, Q. Li, Z.S. Zou, J. Northeast. Univ. (Nat. Sci.) 35 (2014) 1266–1269+1283. C.Z. Li, Y.B. He, Q. Li, Z.S. Zou, J. Northeast. Univ. (Nat. Sci.) 35 (2014) 1266–1269+1283.
[33]
Zurück zum Zitat T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, Comput. Fluids 24 (1995) 227–238.CrossRef T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, Comput. Fluids 24 (1995) 227–238.CrossRef
[34]
Zurück zum Zitat X.Y. Guo, S.Y. Yan, S. Wang, Q.M. Wang, Q.H. Tian, Nonferrous Metals Science and Engineering 8 (2017) No. 5, 21–25. X.Y. Guo, S.Y. Yan, S. Wang, Q.M. Wang, Q.H. Tian, Nonferrous Metals Science and Engineering 8 (2017) No. 5, 21–25.
Metadaten
Titel
Numerical simulation of flow characteristics of side-bottom combined blowing in iron bath reactor
verfasst von
Yi-bo He
Wen-ke Guo
Yi-hong Li
Guang-ming Liu
Xin Cui
Publikationsdatum
06.08.2022
Verlag
Springer Nature Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 2/2023
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-022-00812-5

Weitere Artikel der Ausgabe 2/2023

Journal of Iron and Steel Research International 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.