Skip to main content
Erschienen in: Journal of Iron and Steel Research International 6/2023

24.05.2023 | Original Paper

Numerical simulation on solidification behavior and structure of 38CrMoAl large round bloom using CAFE model

verfasst von: Rui-song Tan, Wei Liu, Bo Song, Shu-feng Yang, Yong-feng Chen, Xiao-tan Zuo, Yan Huang

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 6/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A coupled cellular automaton-finite element model was developed to simulate the solidification behavior and structure of 38CrMoAl large round bloom, in which mold electromagnetic stirring + final electromagnetic stirring was taken into consideration, under different superheat, casting speeds, and secondary cooling water flow. Industrial trials for infrared temperature measurement and macro etch experiments of the post-test round bloom samples were used to verify the simulated solidification structure and temperature field. The simulation results show that superheat and secondary cooling water flow have little influence on the surface temperature, center temperature, and center solid fraction while casting speed has a more obvious influence on solidification behavior. With the increase in the casting speed of 0.02 m min−1, the solidification position is prolonged by about 1.64 m. With the increasing specific water ratio by 0.02 L kg−1 each, the surface temperature of the secondary cooling zones decreases by about 18 °C, and the solidification position shortens by about 0.11 m. As the superheat increases from 10 to 40 °C, the ratio of the equiaxed crystal zone decreases from 35.98% to 23.98%. The casting speed and secondary cooling water flow increase the equiaxed crystal ratios of the large round bloom, but neither is significant, both being about 2%.
Literatur
[1]
Zurück zum Zitat H.J. Wu, C.J. Xu, H.Y. Jin, Y.L. Gao, X.B. Zhang, Y.K. Jin, Appl. Phys. A 128 (2022) 1–9.CrossRef H.J. Wu, C.J. Xu, H.Y. Jin, Y.L. Gao, X.B. Zhang, Y.K. Jin, Appl. Phys. A 128 (2022) 1–9.CrossRef
[3]
[4]
Zurück zum Zitat H. Sun, L. Li, J. Wang, X. Cheng, F. Zhou, Ironmak. Steelmak. 45 (2018) 708–713.CrossRef H. Sun, L. Li, J. Wang, X. Cheng, F. Zhou, Ironmak. Steelmak. 45 (2018) 708–713.CrossRef
[5]
Zurück zum Zitat Q. Dong, J. Zhang, B. Wang, X. Zhao, J. Mater. Process. Technol. 238 (2016) 81–88.CrossRef Q. Dong, J. Zhang, B. Wang, X. Zhao, J. Mater. Process. Technol. 238 (2016) 81–88.CrossRef
[6]
Zurück zum Zitat D. Jiang, W. Wang, S. Luo, C. Ji, M. Zhu, Int. J. Heat Mass Transf. 122 (2018) 315–323.CrossRef D. Jiang, W. Wang, S. Luo, C. Ji, M. Zhu, Int. J. Heat Mass Transf. 122 (2018) 315–323.CrossRef
[7]
[8]
Zurück zum Zitat Q. Li, Z. Zhao, W. Chen, J. Zhang, L. Zhang, Metall. Mater. Trans. B 53 (2022) 2481–2498.CrossRef Q. Li, Z. Zhao, W. Chen, J. Zhang, L. Zhang, Metall. Mater. Trans. B 53 (2022) 2481–2498.CrossRef
[10]
[11]
[12]
Zurück zum Zitat T. Sun, F. Yue, H.J. Wu, C. Guo, Y. Li, Z.C. Ma, J. Iron Steel Res. Int. 23 (2016) 329–337.CrossRef T. Sun, F. Yue, H.J. Wu, C. Guo, Y. Li, Z.C. Ma, J. Iron Steel Res. Int. 23 (2016) 329–337.CrossRef
[14]
Zurück zum Zitat L. Niu, S.T. Qiu, J.X. Zhao, Y.Q. Chen, S.F. Yang, Ironmak. Steelmak. 46 (2019) 835–844.CrossRef L. Niu, S.T. Qiu, J.X. Zhao, Y.Q. Chen, S.F. Yang, Ironmak. Steelmak. 46 (2019) 835–844.CrossRef
[15]
[16]
Zurück zum Zitat B. Lally, L. Biegler, H. Henein, Metall. Trans. B 21 (1990) 761–770.CrossRef B. Lally, L. Biegler, H. Henein, Metall. Trans. B 21 (1990) 761–770.CrossRef
[17]
Zurück zum Zitat H.Z. Zhao, X.H. Liu, G.D. Wang, J. Iron Steel Res. Int. 13 (2006) 68–73.CrossRef H.Z. Zhao, X.H. Liu, G.D. Wang, J. Iron Steel Res. Int. 13 (2006) 68–73.CrossRef
[18]
[19]
Zurück zum Zitat P. Thévoz, J.L. Desbiolles, M. Rappaz, Metall. Trans. A 20 (1989) 311–322.CrossRef P. Thévoz, J.L. Desbiolles, M. Rappaz, Metall. Trans. A 20 (1989) 311–322.CrossRef
[20]
[21]
Zurück zum Zitat H. Sun, L. Li, X. Cheng, W. Qiu, Z. Liu, L. Zeng, Ironmak. Steelmak. 42 (2015) 439–449.CrossRef H. Sun, L. Li, X. Cheng, W. Qiu, Z. Liu, L. Zeng, Ironmak. Steelmak. 42 (2015) 439–449.CrossRef
[22]
Zurück zum Zitat P. Wang, Z. Tie, S. Li, P. Lan, H. Tang, J. Zhang, Ironmak. Steelmak. 48 (2021) 779–787.CrossRef P. Wang, Z. Tie, S. Li, P. Lan, H. Tang, J. Zhang, Ironmak. Steelmak. 48 (2021) 779–787.CrossRef
[23]
Metadaten
Titel
Numerical simulation on solidification behavior and structure of 38CrMoAl large round bloom using CAFE model
verfasst von
Rui-song Tan
Wei Liu
Bo Song
Shu-feng Yang
Yong-feng Chen
Xiao-tan Zuo
Yan Huang
Publikationsdatum
24.05.2023
Verlag
Springer Nature Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 6/2023
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-023-00972-y

Weitere Artikel der Ausgabe 6/2023

Journal of Iron and Steel Research International 6/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.