Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 2/2023

16.11.2022 | Original Research

Numerical solution of two-dimensional inverse time-fractional diffusion problem with non-local boundary condition using a-polynomials

verfasst von: Jalal Hajishafieiha, Saeid Abbasbandy

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we obtain the numerical solution of two-dimensional inverse time-fractional diffusion problem with non-local boundary condition using a-polynomials. These polynomials are equipped with an unknown parameter a that is obtained by collocation and least squares methods. In fact, the optimal parameter a is replaced in the a-polynomials, and then with these polynomials that no longer have the a parameter, the numerical solution is approximated. Time discretization of the equation is performed by \({L_1}\) method. The convergence theorem for a-polynomials has been proved in this article. In three examples, four types of measurement errors have been used to confirm the accuracy of the present method and compare the results with other methods. The stability of the present method has been investigated in all examples when the input data is contaminated with noise. Considering that in each example, the optimum value of parameter a is obtained, the results are stable in noise mode. The results in the examples also show the accuracy and advantage of the present method in comparison with the other method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J.: Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities. Springer, Switzerland (2017)MATHCrossRef Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J.: Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities. Springer, Switzerland (2017)MATHCrossRef
3.
Zurück zum Zitat Brociek, R., Słota, D., Zielonka, A.: Reconstruction robin boundary condition in the heat conduction inverse problem of fractional order. In: Theory and Applications of Non–Integer Order Systems, pp. 147–156 (2017) Brociek, R., Słota, D., Zielonka, A.: Reconstruction robin boundary condition in the heat conduction inverse problem of fractional order. In: Theory and Applications of Non–Integer Order Systems, pp. 147–156 (2017)
4.
Zurück zum Zitat Bueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage, K.: Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization. J. R. Soc. Interface 11(97), 20140352 (2014)CrossRef Bueno-Orovio, A., Kay, D., Grau, V., Rodriguez, B., Burrage, K.: Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization. J. R. Soc. Interface 11(97), 20140352 (2014)CrossRef
5.
Zurück zum Zitat Can, N.H., Luc, N.H., Baleanu, D., Zhou, Y., Long, L.D.: Inverse source problem for time fractional diffusion equation with Mittag–Leffler kernel. Adv. Differ. Equ. 2020(1), 1–8 (2020)MathSciNetMATHCrossRef Can, N.H., Luc, N.H., Baleanu, D., Zhou, Y., Long, L.D.: Inverse source problem for time fractional diffusion equation with Mittag–Leffler kernel. Adv. Differ. Equ. 2020(1), 1–8 (2020)MathSciNetMATHCrossRef
6.
Zurück zum Zitat Cheng, H., Fu, C.L.: An iteration regularization for a time-fractional inverse diffusion problem. Appl. Math. Model. 36(11), 5642–5649 (2012)MathSciNetMATHCrossRef Cheng, H., Fu, C.L.: An iteration regularization for a time-fractional inverse diffusion problem. Appl. Math. Model. 36(11), 5642–5649 (2012)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Deü, J.F., Matignon, D.: Simulation of fractionally damped mechanical systems by means of a Newmark-diffusive scheme. Comput. Math. Appl. 59(5), 1745–1753 (2010)MathSciNetMATHCrossRef Deü, J.F., Matignon, D.: Simulation of fractionally damped mechanical systems by means of a Newmark-diffusive scheme. Comput. Math. Appl. 59(5), 1745–1753 (2010)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Heidelberg (2010)MATHCrossRef Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Heidelberg (2010)MATHCrossRef
9.
Zurück zum Zitat Djennadi, S., Shawagfeh, N., Arqub, O.A.: A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations. Chaos Solitons Fract. 150, 111127 (2021)MathSciNetMATHCrossRef Djennadi, S., Shawagfeh, N., Arqub, O.A.: A fractional Tikhonov regularization method for an inverse backward and source problems in the time-space fractional diffusion equations. Chaos Solitons Fract. 150, 111127 (2021)MathSciNetMATHCrossRef
10.
Zurück zum Zitat Djennadi, S., Shawagfeh, N., Arqub, O.A.: A numerical algorithm in reproducing kernel-based approach for solving the inverse source problem of the time-space fractional diffusion equation. Part. Differ. Equ. Appl. Math. 4, 100164 (2021)MATH Djennadi, S., Shawagfeh, N., Arqub, O.A.: A numerical algorithm in reproducing kernel-based approach for solving the inverse source problem of the time-space fractional diffusion equation. Part. Differ. Equ. Appl. Math. 4, 100164 (2021)MATH
11.
Zurück zum Zitat Djennadi, S., Shawagfeh, N., Arqub, O.A.: Well-posedness of the inverse problem of time fractional heat equation in the sense of the Atangana-Baleanu fractional approach. Alex. Eng. J. 59(4), 2261–2268 (2020)CrossRef Djennadi, S., Shawagfeh, N., Arqub, O.A.: Well-posedness of the inverse problem of time fractional heat equation in the sense of the Atangana-Baleanu fractional approach. Alex. Eng. J. 59(4), 2261–2268 (2020)CrossRef
12.
Zurück zum Zitat Djennadi, S., Shawagfeh, N., Osman, M.S., Gómez-Aguilar, J.F., Arqub, O.A.: The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique. Phys. Scr. 96(9), 094006 (2021)CrossRef Djennadi, S., Shawagfeh, N., Osman, M.S., Gómez-Aguilar, J.F., Arqub, O.A.: The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique. Phys. Scr. 96(9), 094006 (2021)CrossRef
13.
Zurück zum Zitat Feng, P., Karimov, E.T.: Inverse source problems for time-fractional mixed parabolic-hyperbolic-type equations. J. Inverse Ill-posed Problems 23(4), 339–353 (2015)MathSciNetMATHCrossRef Feng, P., Karimov, E.T.: Inverse source problems for time-fractional mixed parabolic-hyperbolic-type equations. J. Inverse Ill-posed Problems 23(4), 339–353 (2015)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Guo, B., Pu, X., Huang, F.: Fractional Partial Differential Equations and their Numerical Solutions. World Scientific Publishing Company, Beijing (2015)MATHCrossRef Guo, B., Pu, X., Huang, F.: Fractional Partial Differential Equations and their Numerical Solutions. World Scientific Publishing Company, Beijing (2015)MATHCrossRef
15.
Zurück zum Zitat Guo, B.Y., Shen, J., Wang, Z.Q.: Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval. Int. J. Numer. Meth. Engng 53, 65–84 (2002)MathSciNetMATHCrossRef Guo, B.Y., Shen, J., Wang, Z.Q.: Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval. Int. J. Numer. Meth. Engng 53, 65–84 (2002)MathSciNetMATHCrossRef
16.
Zurück zum Zitat Hajishafieiha, J., Abbasbandy, S.: A new method based on polynomials equipped with a parameter to solve two parabolic inverse problems with a nonlocal boundary condition. Inverse Problems Sci. Eng. 1, 1–15 (2019)MATH Hajishafieiha, J., Abbasbandy, S.: A new method based on polynomials equipped with a parameter to solve two parabolic inverse problems with a nonlocal boundary condition. Inverse Problems Sci. Eng. 1, 1–15 (2019)MATH
17.
Zurück zum Zitat Hajishafieiha, J., Abbasbandy, S.: A new class of polynomial functions for approximate solution of generalized Benjamin–Bona–Mahony–Burgers (gBBMB) equations. Appl. Math. Comput. 367, 124765 (2020)MathSciNetMATH Hajishafieiha, J., Abbasbandy, S.: A new class of polynomial functions for approximate solution of generalized Benjamin–Bona–Mahony–Burgers (gBBMB) equations. Appl. Math. Comput. 367, 124765 (2020)MathSciNetMATH
18.
Zurück zum Zitat Hanson, G.W., Yakovlev, A.B.: Operator Theory for Electromagnetics. Springer, New York (2002)MATHCrossRef Hanson, G.W., Yakovlev, A.B.: Operator Theory for Electromagnetics. Springer, New York (2002)MATHCrossRef
19.
Zurück zum Zitat Kirane, M., Malik, S.A., Al-Gwaiz, M.A.: An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions. Math. Methods Appl. Sci. 36(9), 1056–1069 (2013)MathSciNetMATHCrossRef Kirane, M., Malik, S.A., Al-Gwaiz, M.A.: An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions. Math. Methods Appl. Sci. 36(9), 1056–1069 (2013)MathSciNetMATHCrossRef
20.
Zurück zum Zitat Li, M., Xi, X.X., Xiong, X.T.: Regularization for a fractional sideways heat equation. J. Comput. Appl. Math. 255, 28–43 (2014)MathSciNetMATHCrossRef Li, M., Xi, X.X., Xiong, X.T.: Regularization for a fractional sideways heat equation. J. Comput. Appl. Math. 255, 28–43 (2014)MathSciNetMATHCrossRef
21.
Zurück zum Zitat Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, (2019) Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, (2019)
22.
Zurück zum Zitat Liu, C.S., Chen, W., Fu, Z.: A multiple-scale MQ-RBF for solving the inverse Cauchy problems in arbitrary plane domain. Eng. Anal. Bound. Elem. 68, 11–16 (2016)MathSciNetMATHCrossRef Liu, C.S., Chen, W., Fu, Z.: A multiple-scale MQ-RBF for solving the inverse Cauchy problems in arbitrary plane domain. Eng. Anal. Bound. Elem. 68, 11–16 (2016)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Liu, S., Feng, L.: An inverse problem for a two-dimensional time-fractional sideways heat equation. Math. Problems Eng. 1, 2020 (2020)MathSciNet Liu, S., Feng, L.: An inverse problem for a two-dimensional time-fractional sideways heat equation. Math. Problems Eng. 1, 2020 (2020)MathSciNet
24.
Zurück zum Zitat Liu, Y., Rundell, W., Yamamoto, M.: Strong maximum principle for fractional diffusion equations and an application to an inverse source problem. Fract. Calc. Appl. Anal. 19(4), 888–906 (2016)MathSciNetMATHCrossRef Liu, Y., Rundell, W., Yamamoto, M.: Strong maximum principle for fractional diffusion equations and an application to an inverse source problem. Fract. Calc. Appl. Anal. 19(4), 888–906 (2016)MathSciNetMATHCrossRef
25.
Zurück zum Zitat Lopushanska, H., Rapita, V.: Inverse coefficient problem for the semi-linear fractional telegraph equation. Electron. J. Differ. Equ. 153, 1–13 (2015)MathSciNetMATH Lopushanska, H., Rapita, V.: Inverse coefficient problem for the semi-linear fractional telegraph equation. Electron. J. Differ. Equ. 153, 1–13 (2015)MathSciNetMATH
26.
Zurück zum Zitat Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59(5), 1586–1593 (2010)MathSciNetMATHCrossRef Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59(5), 1586–1593 (2010)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Milici, C., Drăgănescu, G., Machado, J.T.: Introduction to Fractional Differential Equations. Springer, Switzerland (2019)MATHCrossRef Milici, C., Drăgănescu, G., Machado, J.T.: Introduction to Fractional Differential Equations. Springer, Switzerland (2019)MATHCrossRef
28.
Zurück zum Zitat Mirkhezri, A.: MLPG method based on particular solution to identify a time-dependent boundary source for the time-fractional diffusion equation. Int. J. Comput. Math. 98(4), 657–670 (2021)MathSciNetMATHCrossRef Mirkhezri, A.: MLPG method based on particular solution to identify a time-dependent boundary source for the time-fractional diffusion equation. Int. J. Comput. Math. 98(4), 657–670 (2021)MathSciNetMATHCrossRef
29.
Zurück zum Zitat Pao, C.V.: Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions. J. Math. Anal. Appl. 195(3), 702–718 (1995)MathSciNetMATHCrossRef Pao, C.V.: Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions. J. Math. Anal. Appl. 195(3), 702–718 (1995)MathSciNetMATHCrossRef
31.
Zurück zum Zitat Rassias, J.M., Karimov, E.T.: Boundary–value problems with non–local condition for degenerate parabolic equations. arXiv preprint arXiv:1301.3208 (2013) Rassias, J.M., Karimov, E.T.: Boundary–value problems with non–local condition for degenerate parabolic equations. arXiv preprint arXiv:​1301.​3208 (2013)
32.
Zurück zum Zitat Ray, S.S.: Fractional Calculus with Applications for Nuclear Reactor Dynamics. Taylor & Francis Group, Boca Raton (2016)MATH Ray, S.S.: Fractional Calculus with Applications for Nuclear Reactor Dynamics. Taylor & Francis Group, Boca Raton (2016)MATH
33.
Zurück zum Zitat Roohani Ghehsareh, H., Zabetzadeh, S.M.: A meshless computational approach for solving two-dimensional inverse time-fractional diffusion problem with non-local boundary condition. Inverse Problems Sci. Eng. 28(12), 1773–1795 (2020)MathSciNetMATHCrossRef Roohani Ghehsareh, H., Zabetzadeh, S.M.: A meshless computational approach for solving two-dimensional inverse time-fractional diffusion problem with non-local boundary condition. Inverse Problems Sci. Eng. 28(12), 1773–1795 (2020)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Ruan, Z., Zhang, S., Xiong, S.: Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evol. Equ.Control Theory 7(4), 669 (2018)MathSciNetMATHCrossRef Ruan, Z., Zhang, S., Xiong, S.: Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evol. Equ.Control Theory 7(4), 669 (2018)MathSciNetMATHCrossRef
35.
Zurück zum Zitat Šišková, K., Slodička, M.: Recognition of a time-dependent source in a time-fractional wave equation. Appl. Numer. Math. 121, 1–7 (2017)MathSciNetMATHCrossRef Šišková, K., Slodička, M.: Recognition of a time-dependent source in a time-fractional wave equation. Appl. Numer. Math. 121, 1–7 (2017)MathSciNetMATHCrossRef
36.
Zurück zum Zitat Slodička, M.: Determination of a solely time-dependent source in a semilinear parabolic problem by means of boundary measurements. J. Comput. Appl. Math. 289, 433–440 (2015)MathSciNetMATHCrossRef Slodička, M.: Determination of a solely time-dependent source in a semilinear parabolic problem by means of boundary measurements. J. Comput. Appl. Math. 289, 433–440 (2015)MathSciNetMATHCrossRef
37.
Zurück zum Zitat Uçar, S., Uçar, E., Özdemir, N., Hammouch, Z.: Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative. Chaos Solitons Fract. 118, 300–306 (2019)MathSciNetMATHCrossRef Uçar, S., Uçar, E., Özdemir, N., Hammouch, Z.: Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative. Chaos Solitons Fract. 118, 300–306 (2019)MathSciNetMATHCrossRef
38.
Zurück zum Zitat Wang, J.G., Zhou, Y.B., Wei, T.: Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation. Appl. Numer. Math. 68, 39–57 (2013)MathSciNetMATHCrossRef Wang, J.G., Zhou, Y.B., Wei, T.: Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation. Appl. Numer. Math. 68, 39–57 (2013)MathSciNetMATHCrossRef
39.
Zurück zum Zitat Wei, T., Zhang, Z.Q.: Reconstruction of a time-dependent source term in a time-fractional diffusion equation. Eng. Anal. Boundary Elem. 37(1), 23–31 (2013)MathSciNetMATHCrossRef Wei, T., Zhang, Z.Q.: Reconstruction of a time-dependent source term in a time-fractional diffusion equation. Eng. Anal. Boundary Elem. 37(1), 23–31 (2013)MathSciNetMATHCrossRef
40.
Zurück zum Zitat Xiong, X., Guo, H., Liu, X.: An inverse problem for a fractional diffusion equation. J. Comput. Appl. Math. 236(17), 4474–4484 (2012)MathSciNetMATHCrossRef Xiong, X., Guo, H., Liu, X.: An inverse problem for a fractional diffusion equation. J. Comput. Appl. Math. 236(17), 4474–4484 (2012)MathSciNetMATHCrossRef
41.
Zurück zum Zitat Yan, L., Yang, F.: The method of approximate particular solutions for the time-fractional diffusion equation with a non-local boundary condition. Comput. Math. Appl. 70(3), 254–264 (2015)MathSciNetMATHCrossRef Yan, L., Yang, F.: The method of approximate particular solutions for the time-fractional diffusion equation with a non-local boundary condition. Comput. Math. Appl. 70(3), 254–264 (2015)MathSciNetMATHCrossRef
42.
43.
Zurück zum Zitat Zheng, G.H., Wei, T.: Spectral regularization method for solving a time-fractional inverse diffusion problem. Appl. Math. Comput. 218(2), 396–405 (2011)MathSciNetMATH Zheng, G.H., Wei, T.: Spectral regularization method for solving a time-fractional inverse diffusion problem. Appl. Math. Comput. 218(2), 396–405 (2011)MathSciNetMATH
Metadaten
Titel
Numerical solution of two-dimensional inverse time-fractional diffusion problem with non-local boundary condition using a-polynomials
verfasst von
Jalal Hajishafieiha
Saeid Abbasbandy
Publikationsdatum
16.11.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 2/2023
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-022-01812-0

Weitere Artikel der Ausgabe 2/2023

Journal of Applied Mathematics and Computing 2/2023 Zur Ausgabe

Premium Partner