Skip to main content
Erschienen in: Engineering with Computers 1/2021

05.08.2019 | Original Article

Numerical study of temperature distribution in an inverse moving boundary problem using a meshless method

verfasst von: Yasaman Lotfi, Kourosh Parand, Kamal Rashedi, Jamal Amani Rad

Erschienen in: Engineering with Computers | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we consider the inverse one-phase one-dimensional Stefan problem to study the thermal processes with phase change in a moving boundary problem and calculate the temperature distribution in the given domain, as well as approximate the temperature and the heat flux on a boundary of the region. For this problem, the location of the moving boundary and temperature distribution on this curve are available as the extra specifications. First, we use the Landau’s transformation to get a rectangular domain and then apply the Crank–Nicolson finite-difference scheme to discretize the time dimension and reduce the problem to a linear system of differential equations. Next, we employ the radial basis function collocation technique to approximate the spatial unknown function and its derivatives at each time level. Finally, the linear systems of algebraic equations constructed in this way are solved using the LU factorization method. To show the numerical convergence and stability of the proposed method, we solve two benchmark examples when the boundary data are exact or contaminated with additive noises.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abbasbandy S, Ghehsareh HR, Alhuthali MS, Alsulami HH (2014) Comparison of meshless local weak and strong forms based on particular solutions for a non-classical 2-D diffusion model. Eng Anal Bound Elem 39:121–128MathSciNetMATH Abbasbandy S, Ghehsareh HR, Alhuthali MS, Alsulami HH (2014) Comparison of meshless local weak and strong forms based on particular solutions for a non-classical 2-D diffusion model. Eng Anal Bound Elem 39:121–128MathSciNetMATH
2.
Zurück zum Zitat Abbasbandy S, Shirzadi A (2011) MLPG method for two-dimensional diffusion equation with Neumann’s and non-classical boundary conditions. Appl Numer Math 61:170–180MathSciNetMATH Abbasbandy S, Shirzadi A (2011) MLPG method for two-dimensional diffusion equation with Neumann’s and non-classical boundary conditions. Appl Numer Math 61:170–180MathSciNetMATH
3.
Zurück zum Zitat Alexiades V, Solomon AD (1993) Mathematical modeling of melting and freezing processes. Hemisphere Publ. Corp, Washington Alexiades V, Solomon AD (1993) Mathematical modeling of melting and freezing processes. Hemisphere Publ. Corp, Washington
4.
Zurück zum Zitat Assari P, Adibi H, Dehghan M (2013) A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. J Comput Appl Math 239:72–92MathSciNetMATH Assari P, Adibi H, Dehghan M (2013) A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. J Comput Appl Math 239:72–92MathSciNetMATH
5.
Zurück zum Zitat Assari P, Adibi H, Dehghan M (2014) A meshless discrete galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels. J Comput Appl Math 267:160–181MathSciNetMATH Assari P, Adibi H, Dehghan M (2014) A meshless discrete galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels. J Comput Appl Math 267:160–181MathSciNetMATH
6.
Zurück zum Zitat Atkins DL, Ervin JS, Saxena A (2005) Computational model of the freezing of jet fuel. J Propul Power 21:356–367 Atkins DL, Ervin JS, Saxena A (2005) Computational model of the freezing of jet fuel. J Propul Power 21:356–367
7.
Zurück zum Zitat Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127MathSciNetMATH Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127MathSciNetMATH
8.
Zurück zum Zitat Barry SI, Caunce J (2008) Exact and numerical solutions to a Stefan problem with two moving boundaries. Appl Math Model 32:83–98MATH Barry SI, Caunce J (2008) Exact and numerical solutions to a Stefan problem with two moving boundaries. Appl Math Model 32:83–98MATH
9.
Zurück zum Zitat Beck JV, Blackwell B, Clair CRS (1985) Inverse heat conduction, Ill-posed problems. Wiley, New YorkMATH Beck JV, Blackwell B, Clair CRS (1985) Inverse heat conduction, Ill-posed problems. Wiley, New YorkMATH
10.
Zurück zum Zitat Cannon JR (1967) The Cauchy problem for the heat equation. SIAM J Numer Anal 4:17–36MathSciNet Cannon JR (1967) The Cauchy problem for the heat equation. SIAM J Numer Anal 4:17–36MathSciNet
11.
Zurück zum Zitat Cannon JR (1984) The one-dimensional heat equation. Addison-Wesley, CaliforniaMATH Cannon JR (1984) The one-dimensional heat equation. Addison-Wesley, CaliforniaMATH
12.
Zurück zum Zitat Cannon JR, Hill CD (1967) Existence, uniqueness, stability, and monotone dependence in a Stefan problem for the heat equation. SIAM J Numer Anal 17:1–19MathSciNetMATH Cannon JR, Hill CD (1967) Existence, uniqueness, stability, and monotone dependence in a Stefan problem for the heat equation. SIAM J Numer Anal 17:1–19MathSciNetMATH
13.
Zurück zum Zitat Cannon JR, Primicerio M (1971) Remarks on the one-phase Stefan problem for the heat equation with the flux prescribed on the fixed boundary. J Math Anal Appl 35:361–373MathSciNetMATH Cannon JR, Primicerio M (1971) Remarks on the one-phase Stefan problem for the heat equation with the flux prescribed on the fixed boundary. J Math Anal Appl 35:361–373MathSciNetMATH
14.
Zurück zum Zitat Cannon JR, van der Hoek J (1982) The one phase Stefan problem subject to the specification of energy. J Math Anal Appl 86:281–291MathSciNetMATH Cannon JR, van der Hoek J (1982) The one phase Stefan problem subject to the specification of energy. J Math Anal Appl 86:281–291MathSciNetMATH
15.
Zurück zum Zitat Chang CL (2002) Pretreatment of wastewater by vacuum freezing system in a cool thermal storage process. J Sep Purif Technol 26:165–176 Chang CL (2002) Pretreatment of wastewater by vacuum freezing system in a cool thermal storage process. J Sep Purif Technol 26:165–176
16.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2016) Numerical study of three-dimensional turing patterns using a meshless method based on moving Kriging element free Galerkin (EFG) approach. Comput Math Appl 72:427–454MathSciNetMATH Dehghan M, Abbaszadeh M (2016) Numerical study of three-dimensional turing patterns using a meshless method based on moving Kriging element free Galerkin (EFG) approach. Comput Math Appl 72:427–454MathSciNetMATH
17.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2017) Element free galerkin approach based on the reproducing kernel particle method for solving 2D fractional tricomi-type equation with Robin boundary condition. Comput Math Appl 73:1270–1285MathSciNetMATH Dehghan M, Abbaszadeh M (2017) Element free galerkin approach based on the reproducing kernel particle method for solving 2D fractional tricomi-type equation with Robin boundary condition. Comput Math Appl 73:1270–1285MathSciNetMATH
18.
Zurück zum Zitat Dehghan M, Ghesmati A (2010) The meshless local Petrov–Galerkin (MLPG) method: a simple and less-costly alternative to the finite element and boundary element methods. Eng Anal Bound Elem 34:324–336MathSciNetMATH Dehghan M, Ghesmati A (2010) The meshless local Petrov–Galerkin (MLPG) method: a simple and less-costly alternative to the finite element and boundary element methods. Eng Anal Bound Elem 34:324–336MathSciNetMATH
19.
Zurück zum Zitat Dehghan M, Mirzaei D (2008) The meshless local Petrov–Galerkin MLPG method for the generalized two-dimensional non-linear Schrodinger equation. Eng Anal Bound Elem 32:747–756MATH Dehghan M, Mirzaei D (2008) The meshless local Petrov–Galerkin MLPG method for the generalized two-dimensional non-linear Schrodinger equation. Eng Anal Bound Elem 32:747–756MATH
20.
Zurück zum Zitat Dehghan M, Mirzaei D (2009) Meshless local boundary integral equation (LBIE) method for the unsteady magnetohydrodynamic (MHD) flow in rectangular and circular pipes. Comput Phys Commun 180:1458–1466MathSciNet Dehghan M, Mirzaei D (2009) Meshless local boundary integral equation (LBIE) method for the unsteady magnetohydrodynamic (MHD) flow in rectangular and circular pipes. Comput Phys Commun 180:1458–1466MathSciNet
21.
Zurück zum Zitat Dehghan M, Mirzaei D (2009) Meshless local Petrov–Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity. Appl Numer Math 59:1043–1058MathSciNetMATH Dehghan M, Mirzaei D (2009) Meshless local Petrov–Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity. Appl Numer Math 59:1043–1058MathSciNetMATH
22.
Zurück zum Zitat Fasshauer G (2007) Meshfree approximation methods with MATLAB. Word Scientific Publishing, SingaporeMATH Fasshauer G (2007) Meshfree approximation methods with MATLAB. Word Scientific Publishing, SingaporeMATH
23.
Zurück zum Zitat Flannery BP, Press WH, Teukolsky SA, Vetterling WT (1996) Numerical recipes in Fortran 90: the art of parallel scientific computing. Cambridge University Press, New YorkMATH Flannery BP, Press WH, Teukolsky SA, Vetterling WT (1996) Numerical recipes in Fortran 90: the art of parallel scientific computing. Cambridge University Press, New YorkMATH
24.
Zurück zum Zitat Griewank PJ, Notz D (2013) Insights into brine dynamics and sea ice desalination from a 1-d model study of gravity drainage. J Geophys Res Oceans 118:3370–3386 Griewank PJ, Notz D (2013) Insights into brine dynamics and sea ice desalination from a 1-d model study of gravity drainage. J Geophys Res Oceans 118:3370–3386
25.
Zurück zum Zitat Grzymkowski R, Slota D (2006) One-phase inverse Stefan problem solved by Adomain decomposition method. Comput Math Appl 51:33–40MathSciNetMATH Grzymkowski R, Slota D (2006) One-phase inverse Stefan problem solved by Adomain decomposition method. Comput Math Appl 51:33–40MathSciNetMATH
26.
Zurück zum Zitat Hemami M, Parand K, Rad JA (2019) Numerical simulation of reaction–diffusion neural dynamics models and their synchronization/desynchronization: application to epileptic seizures. Comput Math Appl (2019) (in press) Hemami M, Parand K, Rad JA (2019) Numerical simulation of reaction–diffusion neural dynamics models and their synchronization/desynchronization: application to epileptic seizures. Comput Math Appl (2019) (in press)
27.
Zurück zum Zitat Hetmaniok E, Slota D, Witula R, Zielonka A (2015) Solution of the one-phase inverse Stefan problem by using the homotopy analysis method. App Math Modell 39:6793–6805MathSciNetMATH Hetmaniok E, Slota D, Witula R, Zielonka A (2015) Solution of the one-phase inverse Stefan problem by using the homotopy analysis method. App Math Modell 39:6793–6805MathSciNetMATH
28.
Zurück zum Zitat Crank J (1996) Free and moving boundary problems. Clarendon Press, OxfordMATH Crank J (1996) Free and moving boundary problems. Clarendon Press, OxfordMATH
29.
Zurück zum Zitat Jochum P (1980) The numerical solution of the inverse Stefan problem. Numer Math 34:411–429MathSciNetMATH Jochum P (1980) The numerical solution of the inverse Stefan problem. Numer Math 34:411–429MathSciNetMATH
30.
Zurück zum Zitat Johansson B, Lesnic D, Reeve T (2011) A method of fundamental solutions for the one-dimensional inverse Stefan problem. Appl Math Model 35:4367–4378MathSciNetMATH Johansson B, Lesnic D, Reeve T (2011) A method of fundamental solutions for the one-dimensional inverse Stefan problem. Appl Math Model 35:4367–4378MathSciNetMATH
31.
Zurück zum Zitat Johansson BT, Lesnic D, Reeve T (2011) A method of fundamental solutions for the one-dimensional inverse Stefan problem. Appl Math Model 35:4367–4378MathSciNetMATH Johansson BT, Lesnic D, Reeve T (2011) A method of fundamental solutions for the one-dimensional inverse Stefan problem. Appl Math Model 35:4367–4378MathSciNetMATH
32.
Zurück zum Zitat Johansson BT, Lesnic D, Reeve T (2013) A meshless regularization method for a two-dimensional two-phase linear inverse Stefan problem. Adv Appl Math Mech 5(6):825–845MathSciNetMATH Johansson BT, Lesnic D, Reeve T (2013) A meshless regularization method for a two-dimensional two-phase linear inverse Stefan problem. Adv Appl Math Mech 5(6):825–845MathSciNetMATH
33.
Zurück zum Zitat Kazem S, Rad JA, Parand K (2012) Radial basis functions methods for solving Fokker–Planck equation. Eng Anal Bound Elem 36:181–189MathSciNetMATH Kazem S, Rad JA, Parand K (2012) Radial basis functions methods for solving Fokker–Planck equation. Eng Anal Bound Elem 36:181–189MathSciNetMATH
34.
Zurück zum Zitat Lame G, Clapeyron BP (1831) Memoire sur la solidification par refroidissement d’un globe. Solide Ann Chem Phys 47:250–256 Lame G, Clapeyron BP (1831) Memoire sur la solidification par refroidissement d’un globe. Solide Ann Chem Phys 47:250–256
35.
Zurück zum Zitat Larsson E, Shcherbakov V, Heryudono A (2017) A least squares radial basis function partition of unity method for solving PDEs. SIAM J Sci Comput 39:A2538–A2563MathSciNetMATH Larsson E, Shcherbakov V, Heryudono A (2017) A least squares radial basis function partition of unity method for solving PDEs. SIAM J Sci Comput 39:A2538–A2563MathSciNetMATH
36.
Zurück zum Zitat Lin H, Atluri SN (2000) Meshless local Petrov–Galerkin (MLPG) method for convection–diffusion problems. Comput Model Eng Sci 1:45–60MathSciNet Lin H, Atluri SN (2000) Meshless local Petrov–Galerkin (MLPG) method for convection–diffusion problems. Comput Model Eng Sci 1:45–60MathSciNet
37.
Zurück zum Zitat Liu CS (2011) Solving two typical inverse Stefan problems by using the Lie-group shooting method. Int J Heat Mass Transfer 54:1941–1949MATH Liu CS (2011) Solving two typical inverse Stefan problems by using the Lie-group shooting method. Int J Heat Mass Transfer 54:1941–1949MATH
38.
Zurück zum Zitat Liu G (2009) Meshfree methods: moving beyond the finite element method. CRC Press, Boca Raton Liu G (2009) Meshfree methods: moving beyond the finite element method. CRC Press, Boca Raton
39.
Zurück zum Zitat Liu G, Gu Y (2005) An introduction to meshfree methods and their programing. Springer, Dordrecht Liu G, Gu Y (2005) An introduction to meshfree methods and their programing. Springer, Dordrecht
40.
Zurück zum Zitat Loos F, Liess HT, Philippe B (2011) Transient analysis of the triggering behaviour of safety fuses. COMSOL Conference, Stuttgart, Germany Loos F, Liess HT, Philippe B (2011) Transient analysis of the triggering behaviour of safety fuses. COMSOL Conference, Stuttgart, Germany
41.
Zurück zum Zitat Murio DA (1992) Solution of inverse heat conduction problems with phase changes by the mollification method. Comput Math Appl 24:45–57MathSciNetMATH Murio DA (1992) Solution of inverse heat conduction problems with phase changes by the mollification method. Comput Math Appl 24:45–57MathSciNetMATH
42.
Zurück zum Zitat Needham DJ, Johansson B, Reeve T (2013) The development of a wax layer on the interior wall of a circular pipe transporting heated oil. Appl Math 67:93–125MathSciNetMATH Needham DJ, Johansson B, Reeve T (2013) The development of a wax layer on the interior wall of a circular pipe transporting heated oil. Appl Math 67:93–125MathSciNetMATH
43.
Zurück zum Zitat Notz D, Worster MG (2009) Desalination processes of sea ice revisited. J Geophys Res 14:1–10 Notz D, Worster MG (2009) Desalination processes of sea ice revisited. J Geophys Res 14:1–10
44.
Zurück zum Zitat Ostrov DN, Goodman J (2002) On the early exercise boundary of the American put option. SIAM J Appl Math 62:1823–1835MathSciNetMATH Ostrov DN, Goodman J (2002) On the early exercise boundary of the American put option. SIAM J Appl Math 62:1823–1835MathSciNetMATH
45.
Zurück zum Zitat Parand K, Rad JA (2012) Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via collocation method based on radial basis functions. Appl Math Comput 218:5292–5309MathSciNetMATH Parand K, Rad JA (2012) Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via collocation method based on radial basis functions. Appl Math Comput 218:5292–5309MathSciNetMATH
46.
Zurück zum Zitat Parand K, Rad JA (2012) Kansa method for the solution of a parabolic equation with an unknown spacewise-dependent coefficient subject to an extra measurement. Comput Phys Commun 184(2013):582–595MathSciNet Parand K, Rad JA (2012) Kansa method for the solution of a parabolic equation with an unknown spacewise-dependent coefficient subject to an extra measurement. Comput Phys Commun 184(2013):582–595MathSciNet
47.
Zurück zum Zitat Quarteroni A, Sacco R, Saleri F (2000) Numerical mathematics. Springer, New YorkMATH Quarteroni A, Sacco R, Saleri F (2000) Numerical mathematics. Springer, New YorkMATH
48.
Zurück zum Zitat Rad J, Parand K (2017) Pricing American options under jump-diffusion models using local weak form meshless techniques. I. J Comput Math 94:1694–1718MathSciNetMATH Rad J, Parand K (2017) Pricing American options under jump-diffusion models using local weak form meshless techniques. I. J Comput Math 94:1694–1718MathSciNetMATH
49.
Zurück zum Zitat Rad J, Rashedi K, Parand K, Adib H (2017) The meshfree strong form methods for solving one dimensional inverse Cauchy–Stefan problem. Eng Comput 33:547–571 Rad J, Rashedi K, Parand K, Adib H (2017) The meshfree strong form methods for solving one dimensional inverse Cauchy–Stefan problem. Eng Comput 33:547–571
50.
Zurück zum Zitat Rad JA, Hook J, Larsson E, Sydow L (2018) Forward deterministic pricing of options using Gaussian radial basis functions. J Comput Sci 24:209–217MathSciNet Rad JA, Hook J, Larsson E, Sydow L (2018) Forward deterministic pricing of options using Gaussian radial basis functions. J Comput Sci 24:209–217MathSciNet
51.
Zurück zum Zitat Rad JA, Kazem S, Parand K (2012) A numerical solution of the nonlinear controlled Duffing oscillator by radial basis functions. Comput Math Appl 64:2049–2065MathSciNetMATH Rad JA, Kazem S, Parand K (2012) A numerical solution of the nonlinear controlled Duffing oscillator by radial basis functions. Comput Math Appl 64:2049–2065MathSciNetMATH
52.
Zurück zum Zitat Rad JA, Parand K (2017) Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov–Galerkin method. Appl Numer Math 115:252–274MathSciNetMATH Rad JA, Parand K (2017) Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov–Galerkin method. Appl Numer Math 115:252–274MathSciNetMATH
53.
Zurück zum Zitat Rad JA, Parand K, Abbasbandy S (2015) Local weak form meshless techniques based on the radial point interpolation (RPI) method and local boundary integral equation (LBIE) method to evaluate European and American options. Commun Nonlinear Sci Numer Simul 22:1178–1200MathSciNetMATH Rad JA, Parand K, Abbasbandy S (2015) Local weak form meshless techniques based on the radial point interpolation (RPI) method and local boundary integral equation (LBIE) method to evaluate European and American options. Commun Nonlinear Sci Numer Simul 22:1178–1200MathSciNetMATH
54.
Zurück zum Zitat Rad JA, Parand K, Ballestra LV (2015) Pricing European and American options by radial basis point interpolation. Appl Math Comput 251:363–377MathSciNetMATH Rad JA, Parand K, Ballestra LV (2015) Pricing European and American options by radial basis point interpolation. Appl Math Comput 251:363–377MathSciNetMATH
55.
Zurück zum Zitat Ramajayam KK, Kumar A (2013) A novel approach to improve the efficacy of tumour ablation during cryosurgery. Cryobiology 67:201–213 Ramajayam KK, Kumar A (2013) A novel approach to improve the efficacy of tumour ablation during cryosurgery. Cryobiology 67:201–213
56.
Zurück zum Zitat Rashedi K, Adibi H, Rad JA, Parand K (2014) Application of the meshfree methods for solving the inverse one-dimensional Stefan problem. Eng Anal Bound Elem 40:1–21MathSciNetMATH Rashedi K, Adibi H, Rad JA, Parand K (2014) Application of the meshfree methods for solving the inverse one-dimensional Stefan problem. Eng Anal Bound Elem 40:1–21MathSciNetMATH
57.
Zurück zum Zitat Reemtsen R, Kirsch A (1984) A method for the numerical solution of the one-dimensional inverse Stefan problem. Numer Math 45:253–273MathSciNetMATH Reemtsen R, Kirsch A (1984) A method for the numerical solution of the one-dimensional inverse Stefan problem. Numer Math 45:253–273MathSciNetMATH
58.
Zurück zum Zitat Reeve TH (2013) The method of fundamental solutions for some direct and inverse problems. Ph. D. Dissertation, University of Birmingham Reeve TH (2013) The method of fundamental solutions for some direct and inverse problems. Ph. D. Dissertation, University of Birmingham
59.
Zurück zum Zitat Rippa S (1999) An algorithm for selecting a good parameter \(c\) in radial basis function interpolation. Adv Comput Math 11:193–210MathSciNetMATH Rippa S (1999) An algorithm for selecting a good parameter \(c\) in radial basis function interpolation. Adv Comput Math 11:193–210MathSciNetMATH
60.
Zurück zum Zitat Rubinstein LI (1971) The Stefan problem. American Mathematical Society, Providence Rubinstein LI (1971) The Stefan problem. American Mathematical Society, Providence
61.
Zurück zum Zitat Safdari-Vaighani A, Heryudono A, Larsson E (2015) A radial basis function partition of unity collocation method for convection–diffusion equations arising in financial applications. J Sci Comput 64:341–367MathSciNetMATH Safdari-Vaighani A, Heryudono A, Larsson E (2015) A radial basis function partition of unity collocation method for convection–diffusion equations arising in financial applications. J Sci Comput 64:341–367MathSciNetMATH
62.
Zurück zum Zitat Safdari-Vaighani A, Larsson E, Heryudono A (2018) Radial basis function methods for the Rosenau equation and other higher order PDEs. J Sci Comput 75:1555–1580MathSciNetMATH Safdari-Vaighani A, Larsson E, Heryudono A (2018) Radial basis function methods for the Rosenau equation and other higher order PDEs. J Sci Comput 75:1555–1580MathSciNetMATH
64.
Zurück zum Zitat Seblani YE, Shivanian E (2019) Boundary value identification of inverse Cauchy problems in arbitrary plane domain through meshless radial point hermite interpolation. Eng Comput (2019) (in press) Seblani YE, Shivanian E (2019) Boundary value identification of inverse Cauchy problems in arbitrary plane domain through meshless radial point hermite interpolation. Eng Comput (2019) (in press)
65.
Zurück zum Zitat Shcherbakov V (2016) Radial basis function partition of unity operator splitting method for pricing multi-asset American options. BIT Numer Math 56:1401–1423MathSciNetMATH Shcherbakov V (2016) Radial basis function partition of unity operator splitting method for pricing multi-asset American options. BIT Numer Math 56:1401–1423MathSciNetMATH
66.
Zurück zum Zitat Shcherbakov V, Larsson E (2016) Radial basis function partition of unity methods for pricing vanilla basket options. Comput Math Appl 71:185–200MathSciNetMATH Shcherbakov V, Larsson E (2016) Radial basis function partition of unity methods for pricing vanilla basket options. Comput Math Appl 71:185–200MathSciNetMATH
67.
Zurück zum Zitat Shirzadi A, Ling L, Abbasbandy S (2012) Meshless simulations of the two-dimensional fractional-time convection–diffusion–reaction equations. Eng Anal Bound Elem 36:1522–1527MathSciNetMATH Shirzadi A, Ling L, Abbasbandy S (2012) Meshless simulations of the two-dimensional fractional-time convection–diffusion–reaction equations. Eng Anal Bound Elem 36:1522–1527MathSciNetMATH
68.
Zurück zum Zitat Singh S, Bhargava R (2014) Simulation of phase transition during cryosurgical treatment of a tumor tissue loaded with nanoparticles using meshfree approach. J Heat Transf 136:121101–121110 Singh S, Bhargava R (2014) Simulation of phase transition during cryosurgical treatment of a tumor tissue loaded with nanoparticles using meshfree approach. J Heat Transf 136:121101–121110
69.
Zurück zum Zitat Slota D (2007) Direct and inverse one-phase Stefan problem solved by variational iteration method. Comput Math Appl 54:1139–1146MathSciNetMATH Slota D (2007) Direct and inverse one-phase Stefan problem solved by variational iteration method. Comput Math Appl 54:1139–1146MathSciNetMATH
70.
Zurück zum Zitat Slota D (2010) The application of the homotopy perturbation method to one-phase inverse Stefan problem. I. Commun Heat Mass Transf 37:587–592 Slota D (2010) The application of the homotopy perturbation method to one-phase inverse Stefan problem. I. Commun Heat Mass Transf 37:587–592
71.
Zurück zum Zitat Slota D, Zielonka A (2009) A new application of He’s variational iteration method for the solution of the one-phase Stefan problem. Comput Math Appl 58:2489–2494MathSciNetMATH Slota D, Zielonka A (2009) A new application of He’s variational iteration method for the solution of the one-phase Stefan problem. Comput Math Appl 58:2489–2494MathSciNetMATH
72.
Zurück zum Zitat Smith GD (1985) Numerical solution of partial differential equations: finite difference methods. Oxford University Press, New York Smith GD (1985) Numerical solution of partial differential equations: finite difference methods. Oxford University Press, New York
73.
Zurück zum Zitat Stefan J (1889) Uber einige probleme der theorie der warmeletung. S B Wien Akad Mat Nat 98:473–484 Stefan J (1889) Uber einige probleme der theorie der warmeletung. S B Wien Akad Mat Nat 98:473–484
74.
Zurück zum Zitat Vrankar L, Kansa EJ, Ling L, Runovc F, Turk G (2010) Moving-boundary problems solved by adaptive radial basis functions. Comput Fluids 39:1480–1490MathSciNetMATH Vrankar L, Kansa EJ, Ling L, Runovc F, Turk G (2010) Moving-boundary problems solved by adaptive radial basis functions. Comput Fluids 39:1480–1490MathSciNetMATH
75.
Zurück zum Zitat Vrankar L, Kansa EJ, Turk G, Runovc F (2006) Solving one-dimensional moving-boundary problems with meshless method. Math Ind 12:672–676MathSciNetMATH Vrankar L, Kansa EJ, Turk G, Runovc F (2006) Solving one-dimensional moving-boundary problems with meshless method. Math Ind 12:672–676MathSciNetMATH
76.
Zurück zum Zitat Vrankar L, Runovc F, Turk G (2007) The use of the mesh free methods (radial basis functions) in the modeling of radionuclide migration and moving boundary value problems. Acta Geotech Sloven 1:43–53 Vrankar L, Runovc F, Turk G (2007) The use of the mesh free methods (radial basis functions) in the modeling of radionuclide migration and moving boundary value problems. Acta Geotech Sloven 1:43–53
77.
Zurück zum Zitat Wang J, Liu G (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Methods Eng 54:1623–1648MATH Wang J, Liu G (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Methods Eng 54:1623–1648MATH
78.
Zurück zum Zitat Wendland H (2005) Scattered data approximation. Cambridge University Press, New YorkMATH Wendland H (2005) Scattered data approximation. Cambridge University Press, New YorkMATH
79.
Zurück zum Zitat Zerroukat M, Chatwin CR (1994) Computational moving boundary problems. Research Studies Press, TauntonMATH Zerroukat M, Chatwin CR (1994) Computational moving boundary problems. Research Studies Press, TauntonMATH
Metadaten
Titel
Numerical study of temperature distribution in an inverse moving boundary problem using a meshless method
verfasst von
Yasaman Lotfi
Kourosh Parand
Kamal Rashedi
Jamal Amani Rad
Publikationsdatum
05.08.2019
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 1/2021
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-019-00835-9

Weitere Artikel der Ausgabe 1/2021

Engineering with Computers 1/2021 Zur Ausgabe

Neuer Inhalt