Skip to main content
Erschienen in: Flow, Turbulence and Combustion 1/2018

31.07.2017

Numerical Study of Turbulent Jet Ignition in a Lean Premixed Configuration

verfasst von: AbdoulAhad Validi, Farhad Jaberi

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Direct numerical simulations (DNS) of a hot combustion product jet interacting with a lean premixed hydrogen-air coflow are conducted to fundamentally investigate turbulent jet ignition (TJI) in a three-dimensional configuration. TJI is an efficient method for initiating and controlling combustion in ultra-lean combustion systems. Fully compressible gas dynamics and species equations are solved with high order finite difference methods. The hydrogen-air reaction is simulated with a reliable detailed chemical kinetics mechanism. The physical processes involved in the TJI-assisted combustion are investigated by considering the flame heat release, temperature, species concentrations, vorticity, and Baroclinc torque. The complex turbulent flame and flow structures are delineated in three main: i) hot product jet, ii) burned-mixed, and iii) flame zones. In the TJI-assisted combustion, the flow structures and the flame features such as flame speed, temperature, and species distribution are found to be quite different than those in “standard” turbulent premixed combustion due to the existence of a high energy turbulent hot product jet. The flow structures and statistics are also found to be different than those normally seen in non-isothermal non-reacting jets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lodier, G., Merlin, C., Domingo, P., Vervisch, L., Ravet, F.: Self-ignition scenarios after rapid compression of a turbulent mixture weakly-stratified in temperature. J. Combust. Flame 159(11), 3358–3371 (2012)CrossRef Lodier, G., Merlin, C., Domingo, P., Vervisch, L., Ravet, F.: Self-ignition scenarios after rapid compression of a turbulent mixture weakly-stratified in temperature. J. Combust. Flame 159(11), 3358–3371 (2012)CrossRef
2.
Zurück zum Zitat Jin, T., Luo, K., Lu, S., Fan, J.: DNS, investigation on flame structure and scalar dissipation of a supersonic lifted hydrogen jet flame in heated coflow. Int. J. Hydro. Energy 38(23), 9886–9896 (2013)CrossRef Jin, T., Luo, K., Lu, S., Fan, J.: DNS, investigation on flame structure and scalar dissipation of a supersonic lifted hydrogen jet flame in heated coflow. Int. J. Hydro. Energy 38(23), 9886–9896 (2013)CrossRef
3.
Zurück zum Zitat Mittal, G., Raju, M., Sung, C.: CFD, modeling of two-stage ignition in a rapid compression machine: Assessment of zero-dimensional approach. J. Combust. Flame 157(7), 1316–1324 (2010)CrossRef Mittal, G., Raju, M., Sung, C.: CFD, modeling of two-stage ignition in a rapid compression machine: Assessment of zero-dimensional approach. J. Combust. Flame 157(7), 1316–1324 (2010)CrossRef
4.
Zurück zum Zitat Carpio, J., Iglesias, I., Vera, M., Sánchez, A., Liñán, A.: Critical radius for hot-jet ignition of hydrogen–air mixtures. Int. J. Hydro. Energy 38(7), 3105–3109 (2013)CrossRef Carpio, J., Iglesias, I., Vera, M., Sánchez, A., Liñán, A.: Critical radius for hot-jet ignition of hydrogen–air mixtures. Int. J. Hydro. Energy 38(7), 3105–3109 (2013)CrossRef
5.
Zurück zum Zitat Dorofeev, S., Bezmelnitsin, A., Sidorov, V., Yankin, J., Matsukov, I.: Turbulent jet initiation of detonation in hydrogen-air mixtures. Shock Waves 6(2), 73–78 (1996)CrossRef Dorofeev, S., Bezmelnitsin, A., Sidorov, V., Yankin, J., Matsukov, I.: Turbulent jet initiation of detonation in hydrogen-air mixtures. Shock Waves 6(2), 73–78 (1996)CrossRef
6.
Zurück zum Zitat Ghorbani, A., Steinhilber, G., Markus, D., Maas, U.: Ignition by transient hot turbulent jets: An investigation of ignition mechanisms by means of a pdf/redim method. Proc. Combust. Inst. 35(2), 2191–2198 (2015)CrossRef Ghorbani, A., Steinhilber, G., Markus, D., Maas, U.: Ignition by transient hot turbulent jets: An investigation of ignition mechanisms by means of a pdf/redim method. Proc. Combust. Inst. 35(2), 2191–2198 (2015)CrossRef
7.
Zurück zum Zitat Boivin, P., Dauptain, A., Jiménez, C., Cuenot, B.: Simulation of a supersonic hydrogen–air autoignition-stabilized flame using reduced chemistry. J. Combust. Flame 159(4), 1779–1790 (2012)CrossRef Boivin, P., Dauptain, A., Jiménez, C., Cuenot, B.: Simulation of a supersonic hydrogen–air autoignition-stabilized flame using reduced chemistry. J. Combust. Flame 159(4), 1779–1790 (2012)CrossRef
8.
Zurück zum Zitat Djebaili, N., Lisbet, R., Dupre, G., Patillard, C.: Ignition of a combustible mixture by a hot unsteady gas jet. Combust. Sci. Technol. 104, 273–285 (1995)CrossRef Djebaili, N., Lisbet, R., Dupre, G., Patillard, C.: Ignition of a combustible mixture by a hot unsteady gas jet. Combust. Sci. Technol. 104, 273–285 (1995)CrossRef
9.
Zurück zum Zitat Iglesias, I., Vera, M., Sanchez, A.L., Linan, A.: Numerical analyses of deflagration initiation by a hot jet. Combust. Theory Modell. 16(6), 994–1010 (2012)CrossRef Iglesias, I., Vera, M., Sanchez, A.L., Linan, A.: Numerical analyses of deflagration initiation by a hot jet. Combust. Theory Modell. 16(6), 994–1010 (2012)CrossRef
10.
Zurück zum Zitat Phillips, H.: Ignition in a transient turbulent jet of hot inert gas. J. Combust. Flame 19(2), 187–195 (1972)CrossRef Phillips, H.: Ignition in a transient turbulent jet of hot inert gas. J. Combust. Flame 19(2), 187–195 (1972)CrossRef
11.
Zurück zum Zitat Sadanandan, R., Markus, D., Schießl, R., Maas, U., Olofsson, J., Seyfried, H., Richter, M., AldénAldén, M.: Detailed investigation of ignition by hot gas jets. Proc. Combust. Inst. 31(1), 719–726 (2007)CrossRef Sadanandan, R., Markus, D., Schießl, R., Maas, U., Olofsson, J., Seyfried, H., Richter, M., AldénAldén, M.: Detailed investigation of ignition by hot gas jets. Proc. Combust. Inst. 31(1), 719–726 (2007)CrossRef
13.
Zurück zum Zitat James, S., Jaberi, F.A.: Large scale simulations of two-dimensional nonpremixed methane jet flames. J. Combust. Flame 123(4), 465–487 (2000)CrossRef James, S., Jaberi, F.A.: Large scale simulations of two-dimensional nonpremixed methane jet flames. J. Combust. Flame 123(4), 465–487 (2000)CrossRef
14.
Zurück zum Zitat Gordeyev, S., Thomas, F.: Coherent structure in the turbulent planar jet. Part 1. Extraction of proper orthogonal decomposition eigenmodes and their self-similarity. J. Fluid Mech. 414, 145–194 (2000)CrossRefMATH Gordeyev, S., Thomas, F.: Coherent structure in the turbulent planar jet. Part 1. Extraction of proper orthogonal decomposition eigenmodes and their self-similarity. J. Fluid Mech. 414, 145–194 (2000)CrossRefMATH
15.
Zurück zum Zitat Gunnar, H.: Hot-wire measurements in a plane turbulent jet. J. Appl. Mech. 32 (4), 721–734 (1965)CrossRef Gunnar, H.: Hot-wire measurements in a plane turbulent jet. J. Appl. Mech. 32 (4), 721–734 (1965)CrossRef
16.
Zurück zum Zitat Hinze, J.: Turbulence. McGraw-Hill, New York (1975) Hinze, J.: Turbulence. McGraw-Hill, New York (1975)
17.
18.
Zurück zum Zitat Heskestad, G.: Hot-wire measurements in a plane turbulent jet1. J. Appl. Mech. 32, 721–734 (1965)CrossRef Heskestad, G.: Hot-wire measurements in a plane turbulent jet1. J. Appl. Mech. 32, 721–734 (1965)CrossRef
19.
Zurück zum Zitat Kee, R., Rupley, F., Miller, J.: Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics (1989) Kee, R., Rupley, F., Miller, J.: Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics (1989)
20.
Zurück zum Zitat Jaberi, F., Miller, R., Mashayek, F., Givi, P.: Differential diffusion in binary scalar mixing and reaction. J. Combust. Flame 109(4), 561–577 (1997)CrossRef Jaberi, F., Miller, R., Mashayek, F., Givi, P.: Differential diffusion in binary scalar mixing and reaction. J. Combust. Flame 109(4), 561–577 (1997)CrossRef
21.
Zurück zum Zitat Stahl, G., Warnatz, J.: Numerical investigation of time-dependent properties and extinction of strained methane and propane-air flamelets. J. Combust. Flame 06, 285–299 (1991)CrossRef Stahl, G., Warnatz, J.: Numerical investigation of time-dependent properties and extinction of strained methane and propane-air flamelets. J. Combust. Flame 06, 285–299 (1991)CrossRef
22.
Zurück zum Zitat Arndt, C., Schiel, R., Gounder, J., Meier, W., Aigner, M.: Flame stabilization and auto-ignition of pulsed methane jets in a hot coflow: Influence of temperature. Proc. Combust. Inst. 34(1), 1483–1490 (2013)CrossRef Arndt, C., Schiel, R., Gounder, J., Meier, W., Aigner, M.: Flame stabilization and auto-ignition of pulsed methane jets in a hot coflow: Influence of temperature. Proc. Combust. Inst. 34(1), 1483–1490 (2013)CrossRef
23.
Zurück zum Zitat Bezgin, L., Kopchenov, V., Sharipov, A., Titova, N., Starik, A.: Evaluation of prediction ability of detailed reaction mechanisms in the combustion performance in hydrogen/air supersonic flows. Combust. Sci. Technol. 185(1), 62–94 (2013)CrossRef Bezgin, L., Kopchenov, V., Sharipov, A., Titova, N., Starik, A.: Evaluation of prediction ability of detailed reaction mechanisms in the combustion performance in hydrogen/air supersonic flows. Combust. Sci. Technol. 185(1), 62–94 (2013)CrossRef
24.
Zurück zum Zitat Ju, Y., Niioka, T.: Reduced kinetic mechanism of ignition for nonpremixed hydrogen/air in a supersonic mixing layer. J. Combust. Flame 99, 240–246 (1994)CrossRef Ju, Y., Niioka, T.: Reduced kinetic mechanism of ignition for nonpremixed hydrogen/air in a supersonic mixing layer. J. Combust. Flame 99, 240–246 (1994)CrossRef
25.
Zurück zum Zitat Vagelopoulos, C., Egolfopoulos, F., Law, C.: Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique. Symp.(Int.) Combust. 25(1), 1341–1347 (1994)CrossRef Vagelopoulos, C., Egolfopoulos, F., Law, C.: Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique. Symp.(Int.) Combust. 25(1), 1341–1347 (1994)CrossRef
26.
27.
Zurück zum Zitat Poinsot, T., Lelef, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992)MathSciNetCrossRefMATH Poinsot, T., Lelef, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Kennedy, C., Carpenter, M., Lewis, R.: Low-storage, explicit runge–kutta schemes for the compressible navier–stokes equations. Appl. Numer. Math. 35(3), 177–219 (2000)MathSciNetCrossRefMATH Kennedy, C., Carpenter, M., Lewis, R.: Low-storage, explicit runge–kutta schemes for the compressible navier–stokes equations. Appl. Numer. Math. 35(3), 177–219 (2000)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Afshari, A., Jaberi, F., Shih, T. P.: Large-eddy simulations of turbulent flows in an axisymmetric dump combustor. AIAA J. 46(7), 1576–1592 (2008)CrossRef Afshari, A., Jaberi, F., Shih, T. P.: Large-eddy simulations of turbulent flows in an axisymmetric dump combustor. AIAA J. 46(7), 1576–1592 (2008)CrossRef
30.
Zurück zum Zitat Banaeizadeh, A., Afshari, A., Schock, H., Jaberi, F.: Large-eddy simulations of turbulent flows in internal combustion engines. Int. J Heat Mass Transfer 60, 781–796 (2013)CrossRef Banaeizadeh, A., Afshari, A., Schock, H., Jaberi, F.: Large-eddy simulations of turbulent flows in internal combustion engines. Int. J Heat Mass Transfer 60, 781–796 (2013)CrossRef
31.
Zurück zum Zitat Banaeizadeh, A., Li, Z., Jaberi, F.: Compressible scalar filtered mass density function model for high-speed turbulent flows. AIAA J. 49(10), 2130–2143 (2011)CrossRef Banaeizadeh, A., Li, Z., Jaberi, F.: Compressible scalar filtered mass density function model for high-speed turbulent flows. AIAA J. 49(10), 2130–2143 (2011)CrossRef
32.
Zurück zum Zitat Li, Z., Banaeizadeh, A., Rezaeiravesh, S., Jaberi, F.: Advanced modeling of high speed turbulent reacting flows. In: 50th AIAA Aerospace Sciences Meeting (2012) Li, Z., Banaeizadeh, A., Rezaeiravesh, S., Jaberi, F.: Advanced modeling of high speed turbulent reacting flows. In: 50th AIAA Aerospace Sciences Meeting (2012)
33.
Zurück zum Zitat Steinberger, C., Vidoni, T., Givi, P.: The compositional structure and the effects of exothermicity in a nonpremixed planar jet flame. J. Combust. Flame 94(3), 217–232 (1993)CrossRef Steinberger, C., Vidoni, T., Givi, P.: The compositional structure and the effects of exothermicity in a nonpremixed planar jet flame. J. Combust. Flame 94(3), 217–232 (1993)CrossRef
34.
Zurück zum Zitat Rehm, J., Clemens, N.: The relationship between vorticity/strain and reaction zone structure in turbulent non-premixed jet flames. Symp. (Int.) Combust. 27(1), 1113–1120 (1998)CrossRef Rehm, J., Clemens, N.: The relationship between vorticity/strain and reaction zone structure in turbulent non-premixed jet flames. Symp. (Int.) Combust. 27(1), 1113–1120 (1998)CrossRef
35.
Zurück zum Zitat Yaldizli, M., Mehravaran, K., Mohammad, H., Jaberi, F.: The structure of partially premixed methane flames in high-intensity turbulent flows. J. Combust. Flame 154(4), 692–714 (2008)CrossRef Yaldizli, M., Mehravaran, K., Mohammad, H., Jaberi, F.: The structure of partially premixed methane flames in high-intensity turbulent flows. J. Combust. Flame 154(4), 692–714 (2008)CrossRef
36.
Zurück zum Zitat Donovan, L., Todd, C.: Computer program for calculating isothermal turbulent jet mixing of two gases (1968) Donovan, L., Todd, C.: Computer program for calculating isothermal turbulent jet mixing of two gases (1968)
37.
Zurück zum Zitat Pathak, M., Dewan, A., Dass, A.: Computational prediction of a slightly heated turbulent rectangular jet discharged into a narrow channel crossflow using two different turbulence models. Int. J. Heat Mass Transfer 49(21–22), 3914–3928 (2006)CrossRefMATH Pathak, M., Dewan, A., Dass, A.: Computational prediction of a slightly heated turbulent rectangular jet discharged into a narrow channel crossflow using two different turbulence models. Int. J. Heat Mass Transfer 49(21–22), 3914–3928 (2006)CrossRefMATH
38.
Zurück zum Zitat Pitts, W.: Importance of isothermal mixing processes to the understanding of lift-off and blowout of turbulent jet diffusion flames. J. Combust. Flame 76(2), 197–212 (1989)CrossRef Pitts, W.: Importance of isothermal mixing processes to the understanding of lift-off and blowout of turbulent jet diffusion flames. J. Combust. Flame 76(2), 197–212 (1989)CrossRef
39.
Zurück zum Zitat Rowinski, D., Pope, S.: An investigation of mixing in a three-stream turbulent jet. Phys. Fluids 25(10), 105–140 (2013)CrossRef Rowinski, D., Pope, S.: An investigation of mixing in a three-stream turbulent jet. Phys. Fluids 25(10), 105–140 (2013)CrossRef
40.
Zurück zum Zitat Rutland, C., Trouvé, A.: Direct simulations of premixed turbulent flames with nonunity lewis numbers. J. Combust. Flame 94(1–2), 41–57 (1993)CrossRef Rutland, C., Trouvé, A.: Direct simulations of premixed turbulent flames with nonunity lewis numbers. J. Combust. Flame 94(1–2), 41–57 (1993)CrossRef
41.
Zurück zum Zitat Nikolaou, Z., Swaminathan, N.: Heat release rate markers for premixed combustion. J.s Comb. Flame 161(12), 3073–3084 (2014)CrossRef Nikolaou, Z., Swaminathan, N.: Heat release rate markers for premixed combustion. J.s Comb. Flame 161(12), 3073–3084 (2014)CrossRef
42.
Zurück zum Zitat Paul, P., Najm, H.: Planar laser-induced fluorescence imaging of flame heat release rate. Symp. (Int.) Combust. 27(1), 43–50 (1998)CrossRef Paul, P., Najm, H.: Planar laser-induced fluorescence imaging of flame heat release rate. Symp. (Int.) Combust. 27(1), 43–50 (1998)CrossRef
43.
Zurück zum Zitat Najm, H., Paul, P., Mueller, C., Wyckoff, P.: On the adequacy of certain experimental observables as measurements of flame burning rate. J. Combust. Flame 113(3), 312–332 (1998)CrossRef Najm, H., Paul, P., Mueller, C., Wyckoff, P.: On the adequacy of certain experimental observables as measurements of flame burning rate. J. Combust. Flame 113(3), 312–332 (1998)CrossRef
44.
Zurück zum Zitat Clavin, P.: Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Progress Energy Combust. Sci. 11(1), 1–59 (1985)CrossRef Clavin, P.: Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Progress Energy Combust. Sci. 11(1), 1–59 (1985)CrossRef
45.
Zurück zum Zitat Pope, S.: Turbulent premixed flames. Ann. Rev.of Fluid Mech. 19, 237–270 (1987)CrossRef Pope, S.: Turbulent premixed flames. Ann. Rev.of Fluid Mech. 19, 237–270 (1987)CrossRef
46.
Zurück zum Zitat Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Symp. (Int.) Combust. 27(1), 917–925 (1998)CrossRef Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Symp. (Int.) Combust. 27(1), 917–925 (1998)CrossRef
47.
Zurück zum Zitat Driscoll, J.: Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Progress Energy Combust. Sci. 34(1), 91–134 (2008)CrossRef Driscoll, J.: Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Progress Energy Combust. Sci. 34(1), 91–134 (2008)CrossRef
48.
Zurück zum Zitat Gicquel, O., Darabiha, N., Thévenin, D.: Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ildm with differential diffusion. Proc. Combust. Inst. 28(2), 1901–1908 (2000)CrossRef Gicquel, O., Darabiha, N., Thévenin, D.: Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ildm with differential diffusion. Proc. Combust. Inst. 28(2), 1901–1908 (2000)CrossRef
49.
Zurück zum Zitat Griffiths, R., Chen, J., Kolla, H., Cant, R., Kollmann, W.: Three-dimensional topology of turbulent premixed flame interaction. Proc. Combust. Inst. 35(2), 1341–1348 (2015)CrossRef Griffiths, R., Chen, J., Kolla, H., Cant, R., Kollmann, W.: Three-dimensional topology of turbulent premixed flame interaction. Proc. Combust. Inst. 35(2), 1341–1348 (2015)CrossRef
50.
Zurück zum Zitat Lee, D, Huh, K.: DNS, analysis of propagation speed and conditional statistics of turbulent premixed flame in a planar impinging jet. Proc. Combust. Inst. 33(1), 1301–1307 (2011)CrossRef Lee, D, Huh, K.: DNS, analysis of propagation speed and conditional statistics of turbulent premixed flame in a planar impinging jet. Proc. Combust. Inst. 33(1), 1301–1307 (2011)CrossRef
51.
Zurück zum Zitat Lipatnikov, A., Chomiak, J.: Effects of premixed flames on turbulence and turbulent scalar transport. Progress Energy Combust. Sci 36(1), 1–102 (2010)CrossRef Lipatnikov, A., Chomiak, J.: Effects of premixed flames on turbulence and turbulent scalar transport. Progress Energy Combust. Sci 36(1), 1–102 (2010)CrossRef
52.
Zurück zum Zitat Lipatnikov, A., Chomiak, J., Sabelnikov, V., Nishiki, S., Hasegawa, T.: Unburned mixture fingers in premixed turbulent flames. Proc. Combust. Inst. 35(2), 1401–1408 (2015)CrossRef Lipatnikov, A., Chomiak, J., Sabelnikov, V., Nishiki, S., Hasegawa, T.: Unburned mixture fingers in premixed turbulent flames. Proc. Combust. Inst. 35(2), 1401–1408 (2015)CrossRef
53.
Zurück zum Zitat Lu, S., Fan, J., Luo, K.: High-fidelity resolution of the characteristic structures of a supersonic hydrogen jet flame with heated co-flow air. Int. J. Hydro. Energy 37 (4), 3528–3539 (2012)CrossRef Lu, S., Fan, J., Luo, K.: High-fidelity resolution of the characteristic structures of a supersonic hydrogen jet flame with heated co-flow air. Int. J. Hydro. Energy 37 (4), 3528–3539 (2012)CrossRef
54.
Zurück zum Zitat Wang, H., Luo, K., Lu, S., Fan, J.: Direct numerical simulation and analysis of a hydrogen/air swirling premixed flame in a micro combustor. Int. J. Hydro. Energy 36(21), 13838–13849 (2011)CrossRef Wang, H., Luo, K., Lu, S., Fan, J.: Direct numerical simulation and analysis of a hydrogen/air swirling premixed flame in a micro combustor. Int. J. Hydro. Energy 36(21), 13838–13849 (2011)CrossRef
55.
Zurück zum Zitat Kotsovinos, N.: A note on the spreading rate and virtual origin of a plane turbulent jet. J. Fluid Mech. 77, 305–311 (1976)CrossRef Kotsovinos, N.: A note on the spreading rate and virtual origin of a plane turbulent jet. J. Fluid Mech. 77, 305–311 (1976)CrossRef
56.
Zurück zum Zitat Beerer, D., McDonell, V., Therkelsen, P., Cheng, R.K.: Flashback and turbulent flame speed measurements in hydrogen/methane flames stabilized by a low-swirl injector at elevated pressures and temperature. J. Eng. Gas Turbi. Power 136, 20242–20254 (2014) Beerer, D., McDonell, V., Therkelsen, P., Cheng, R.K.: Flashback and turbulent flame speed measurements in hydrogen/methane flames stabilized by a low-swirl injector at elevated pressures and temperature. J. Eng. Gas Turbi. Power 136, 20242–20254 (2014)
57.
Zurück zum Zitat Lin, Y., Jansohn, P., Boulouchos, K.: Turbulent flame speed for hydrogen-rich fuel gases at gas turbine relevant conditions. Int. J. Hydro. Energy 39(35), 20242–20254 (2014)CrossRef Lin, Y., Jansohn, P., Boulouchos, K.: Turbulent flame speed for hydrogen-rich fuel gases at gas turbine relevant conditions. Int. J. Hydro. Energy 39(35), 20242–20254 (2014)CrossRef
58.
Zurück zum Zitat Seitzman, J., Lieuwen, T.: Turbulent flame propagation characteristics of high hydrogen content fuels (2014) Seitzman, J., Lieuwen, T.: Turbulent flame propagation characteristics of high hydrogen content fuels (2014)
59.
Zurück zum Zitat Wang, J., Yu, S., Zhang, M., Jin, W., Huang, Z., Chen, S., Kobayashi, H: Burning velocity and statistical flame front structure of turbulent premixed flames at high pressure up to 1.0. Exper. Thermal Fluid Sci. 68, 196–204 (2015)CrossRef Wang, J., Yu, S., Zhang, M., Jin, W., Huang, Z., Chen, S., Kobayashi, H: Burning velocity and statistical flame front structure of turbulent premixed flames at high pressure up to 1.0. Exper. Thermal Fluid Sci. 68, 196–204 (2015)CrossRef
60.
Zurück zum Zitat Kriaa, W., Abderrazak, K., Mhiri, H., Le Palec, G., Bournot, P.: A numerical study of non-isothermal turbulent coaxial jets. J. Heat Mass Transfer 44(9), 1051–1063 (2007)CrossRef Kriaa, W., Abderrazak, K., Mhiri, H., Le Palec, G., Bournot, P.: A numerical study of non-isothermal turbulent coaxial jets. J. Heat Mass Transfer 44(9), 1051–1063 (2007)CrossRef
61.
Zurück zum Zitat Westerweel, J., Petracci, A., Delfos, R., Hunt, J.C.R.: Characteristics of the turbulent/non-turbulent interface of a non-isothermal jet. Philos. Trans. R Soc. London Math. Phys. Eng. Sci. 369(1937), 723–737 (2011)CrossRef Westerweel, J., Petracci, A., Delfos, R., Hunt, J.C.R.: Characteristics of the turbulent/non-turbulent interface of a non-isothermal jet. Philos. Trans. R Soc. London Math. Phys. Eng. Sci. 369(1937), 723–737 (2011)CrossRef
Metadaten
Titel
Numerical Study of Turbulent Jet Ignition in a Lean Premixed Configuration
verfasst von
AbdoulAhad Validi
Farhad Jaberi
Publikationsdatum
31.07.2017
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 1/2018
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-017-9837-7

Weitere Artikel der Ausgabe 1/2018

Flow, Turbulence and Combustion 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.