Skip to main content
Erschienen in: Flow, Turbulence and Combustion 1/2018

04.07.2017

LES/PDF Modeling of Turbulent Premixed Flames with Locally Enhanced Mixing by Reaction

verfasst von: Haifeng Wang, Tejas Pant, Pei Zhang

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Large-eddy simulations (LES) combined with the transported probability density function (PDF) method are carried out for two turbulent piloted premixed methane-air jet flames (flame F1 and flame F3) to assess the capability of LES/PDF for turbulent premixed combustion. The conventionally used model for the sub-filter scale mixing time-scale (or the mixing frequency) fails to capture the premixed flames correctly. This failure is expected to be caused by the lack of the sub-filter scale premixed flame propagation property in the sub-filter scale mixing process when the local flame front is under-resolved. It leads to slower turbulent premixed flame propagation and wider flame front. A new model for specifying the sub-filter scale mixing frequency is developed to account for the effect of sub-filter scale chemical reaction on mixing, based on past development of models for the sub-filter scale scalar dissipation rate in premixed combustion. The new model is assessed in the two turbulent premixed jet flames F1 and F3. Parametric studies are performed to examine the new model and its sensitivity when combined with the different mixing models. Significantly improved performance of the new mixing frequency model is observed to capture the premixed flame propagation reasonably, when compared with the conventional model. The sensitivity of the flame predictions is found be relatively weak to the different mixing models in conjunction with the new mixing frequency model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Pope, S.B.: Turbulent flows. Cambridge University Press (2000) Pope, S.B.: Turbulent flows. Cambridge University Press (2000)
2.
Zurück zum Zitat Pope, S.B.: PDF Methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)CrossRef Pope, S.B.: PDF Methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)CrossRef
3.
Zurück zum Zitat Wang, H., Pope, S.B.: Large eddy simulation/probability density function modeling of a turbulent CH 4/H 2/N 2 jet flame. Proc. Combust. Inst. 33, 1319–1330 (2011)CrossRef Wang, H., Pope, S.B.: Large eddy simulation/probability density function modeling of a turbulent CH 4/H 2/N 2 jet flame. Proc. Combust. Inst. 33, 1319–1330 (2011)CrossRef
4.
Zurück zum Zitat Wang, H., Popov, P.P., Hiremath, V., Lantz, S.R., Viswanathan, S., Pope, S.B.: Large-eddy simulation/probability density function modeling of local extinction and re-ignition. In: Sandia Flame E. 63rd Annual Meeting of the APS Division of Fluid Dynamics, Long Beach, California (2010) Wang, H., Popov, P.P., Hiremath, V., Lantz, S.R., Viswanathan, S., Pope, S.B.: Large-eddy simulation/probability density function modeling of local extinction and re-ignition. In: Sandia Flame E. 63rd Annual Meeting of the APS Division of Fluid Dynamics, Long Beach, California (2010)
5.
Zurück zum Zitat Lindstedt, R.P., Vaos, E.M.: Transported PDF modeling of high-Reynolds-number premixed turbulent flames. Combust. Flame. 145, 495–511 (2006)CrossRef Lindstedt, R.P., Vaos, E.M.: Transported PDF modeling of high-Reynolds-number premixed turbulent flames. Combust. Flame. 145, 495–511 (2006)CrossRef
6.
Zurück zum Zitat Chen, Y.C., Peters, N., Schneemann, G.A., Wruck, N., Renz, U., Mansour, M.S.: The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. Flame. 107, 223–244 (1996)CrossRef Chen, Y.C., Peters, N., Schneemann, G.A., Wruck, N., Renz, U., Mansour, M.S.: The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. Flame. 107, 223–244 (1996)CrossRef
7.
Zurück zum Zitat Stollinger, M., Heinz, S.: Evaluation of scalar mixing and time scale models in PDF simulations of a turbulent premixed flame. Combust. Flame. 157, 1671–1685 (2010)CrossRef Stollinger, M., Heinz, S.: Evaluation of scalar mixing and time scale models in PDF simulations of a turbulent premixed flame. Combust. Flame. 157, 1671–1685 (2010)CrossRef
8.
Zurück zum Zitat Pitsch, H., Duchamp de Lageneste, L.: Large-eddy simulation of premixed turbulent combustion using a level-set approach. Proc. Combust. Inst. 29, 2001–2008 (2002)CrossRef Pitsch, H., Duchamp de Lageneste, L.: Large-eddy simulation of premixed turbulent combustion using a level-set approach. Proc. Combust. Inst. 29, 2001–2008 (2002)CrossRef
9.
Zurück zum Zitat Yilmaz, S.L., Nik, M.B., Givi, P., Strakey, P.A.: Scalar filtered density function for Large Eddy Simulation of a Bunsen burner. J. Propuls. Power 26, 84–93 (2010)CrossRef Yilmaz, S.L., Nik, M.B., Givi, P., Strakey, P.A.: Scalar filtered density function for Large Eddy Simulation of a Bunsen burner. J. Propuls. Power 26, 84–93 (2010)CrossRef
10.
Zurück zum Zitat Wang, G., Boileau, M., Veynante, D.: Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust. Flame 158, 2199–2213 (2011)CrossRef Wang, G., Boileau, M., Veynante, D.: Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust. Flame 158, 2199–2213 (2011)CrossRef
11.
Zurück zum Zitat Dodoulas, I.A., Navarro-Martinez, S.: Large eddy simulation of premixed turbulent flames using the probability density function approach. Flow Turbul. Combust. 90, 645–678 (2013)CrossRef Dodoulas, I.A., Navarro-Martinez, S.: Large eddy simulation of premixed turbulent flames using the probability density function approach. Flow Turbul. Combust. 90, 645–678 (2013)CrossRef
12.
Zurück zum Zitat Langella, I., Swaminathan, N., Gao, Y., Chakraborty, N.: Large eddy simulation of premixed combustion: Sensitivity to subgrid scale velocity modeling. Combust. Sci. Technol. 189, 43–78 (2017)CrossRef Langella, I., Swaminathan, N., Gao, Y., Chakraborty, N.: Large eddy simulation of premixed combustion: Sensitivity to subgrid scale velocity modeling. Combust. Sci. Technol. 189, 43–78 (2017)CrossRef
13.
Zurück zum Zitat Raman, V., Pitsch, H.: A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry. Proc. Combust. Inst. 31, 1711–1719 (2007)CrossRef Raman, V., Pitsch, H.: A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry. Proc. Combust. Inst. 31, 1711–1719 (2007)CrossRef
14.
Zurück zum Zitat Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)MathSciNetCrossRefMATH Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Pierce, C.D., Moin, P.: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids. 10, 3041–3044 (1998)MathSciNetCrossRefMATH Pierce, C.D., Moin, P.: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids. 10, 3041–3044 (1998)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Pope, S.B.: Self-conditioned fields for large-eddy simulations of turbulent flows. J. Fluid Mech. 652, 139–169 (2010)CrossRefMATH Pope, S.B.: Self-conditioned fields for large-eddy simulations of turbulent flows. J. Fluid Mech. 652, 139–169 (2010)CrossRefMATH
17.
Zurück zum Zitat Muradoglu, M., Pope, S.B., Caughey, D.A.: The hybrid method for the PDF equations of turbulent reactive flows: consistency conditions and correction algorithms. J. Comput. Phys. 172, 841–878 (2001)CrossRefMATH Muradoglu, M., Pope, S.B., Caughey, D.A.: The hybrid method for the PDF equations of turbulent reactive flows: consistency conditions and correction algorithms. J. Comput. Phys. 172, 841–878 (2001)CrossRefMATH
18.
Zurück zum Zitat Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)CrossRefMATH Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)CrossRefMATH
19.
Zurück zum Zitat Pitsch, H., Steiner, H.: Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids 12, 2541–2554 (2000)CrossRefMATH Pitsch, H., Steiner, H.: Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids 12, 2541–2554 (2000)CrossRefMATH
20.
Zurück zum Zitat Ihme, M., Pitsch, H.: Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. Combust. Flame 155, 70–89 (2008)CrossRefMATH Ihme, M., Pitsch, H.: Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. Combust. Flame 155, 70–89 (2008)CrossRefMATH
21.
Zurück zum Zitat Wang, H., Juddoo, M., Starner, S.H., Masri, A.R., Pope, S.B.: A novel transient turbulent jet flame for studying turbulent combustion. Proc. Combust. Inst. 34, 1251–1259 (2013)CrossRef Wang, H., Juddoo, M., Starner, S.H., Masri, A.R., Pope, S.B.: A novel transient turbulent jet flame for studying turbulent combustion. Proc. Combust. Inst. 34, 1251–1259 (2013)CrossRef
22.
Zurück zum Zitat Popp, S., Hunger, F., Hartl, S., Messig, D., Coriton, B., Frank, J.H., Fuest, F., Hasse, C.: LES Flamelet-progress variable modeling and measurements of a turbulent partially-premixed dimethyl ether jet flame. Combust. Flame 162, 3016–3029 (2015)CrossRef Popp, S., Hunger, F., Hartl, S., Messig, D., Coriton, B., Frank, J.H., Fuest, F., Hasse, C.: LES Flamelet-progress variable modeling and measurements of a turbulent partially-premixed dimethyl ether jet flame. Combust. Flame 162, 3016–3029 (2015)CrossRef
23.
Zurück zum Zitat Sung, C.J., Law, C.K., Chen, J.Y.: An augmented reduced mechanism for methane oxidation with comprehensive global parametric validation. Proc. Combust. Inst. 27, 295–304 (1998)CrossRef Sung, C.J., Law, C.K., Chen, J.Y.: An augmented reduced mechanism for methane oxidation with comprehensive global parametric validation. Proc. Combust. Inst. 27, 295–304 (1998)CrossRef
24.
Zurück zum Zitat Xu, J., Pope, S.B.: PDF Calculations of turbulent nonpremixed flames with local extinction. Combust. Flame 123(3), 281–307 (2000)CrossRef Xu, J., Pope, S.B.: PDF Calculations of turbulent nonpremixed flames with local extinction. Combust. Flame 123(3), 281–307 (2000)CrossRef
25.
Zurück zum Zitat James, S., Zhu, J., Anand, M.S.: Large-eddy simulations as a design tool for gas turbine combustion systems. AIAA J. 44(4), 674–686 (2006)CrossRef James, S., Zhu, J., Anand, M.S.: Large-eddy simulations as a design tool for gas turbine combustion systems. AIAA J. 44(4), 674–686 (2006)CrossRef
26.
Zurück zum Zitat Tirunagari, R.R., Pope, S.B.: An investigation of turbulent premixed counterflow flames using large-eddy simulations and probability density function methods. Combust. Flame 166, 229–242 (2016)CrossRef Tirunagari, R.R., Pope, S.B.: An investigation of turbulent premixed counterflow flames using large-eddy simulations and probability density function methods. Combust. Flame 166, 229–242 (2016)CrossRef
27.
Zurück zum Zitat Dopazo, C., O’Brien, E.E.: An approach to the autoignition of a turbulent mixture. Acta Astronaut. 1, 1239–1266 (1974)CrossRefMATH Dopazo, C., O’Brien, E.E.: An approach to the autoignition of a turbulent mixture. Acta Astronaut. 1, 1239–1266 (1974)CrossRefMATH
28.
Zurück zum Zitat Janicka, J., Kolbe, W., Kollmann, W.: Closure of the transport equation for the probability density funcfion of turbulent scalar fields. J. Non-Equil. Thermodyn. 4, 47–66 (1979)CrossRefMATH Janicka, J., Kolbe, W., Kollmann, W.: Closure of the transport equation for the probability density funcfion of turbulent scalar fields. J. Non-Equil. Thermodyn. 4, 47–66 (1979)CrossRefMATH
29.
Zurück zum Zitat Nooren, P.A., Wouters, H.A., Peeters, T.W.J., Roekaerts, D.J.E.M., Maas, U., Schmidt, D.: Monte Carlo PDF modelling of a turbulent natural-gas diffusion flame. Combust. Theory Modelling. 1, 79–96 (1997)CrossRefMATH Nooren, P.A., Wouters, H.A., Peeters, T.W.J., Roekaerts, D.J.E.M., Maas, U., Schmidt, D.: Monte Carlo PDF modelling of a turbulent natural-gas diffusion flame. Combust. Theory Modelling. 1, 79–96 (1997)CrossRefMATH
30.
Zurück zum Zitat Subramaniam, S., Pope, S.B.: A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combust. Flame. 115, 487–514 (1998)CrossRef Subramaniam, S., Pope, S.B.: A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combust. Flame. 115, 487–514 (1998)CrossRef
31.
Zurück zum Zitat Girimaji, S.S., Zhou, Y.: Analysis and modeling of subgrid scalar mixing using numerical data. Phys. Fluids 8(5), 1224–1236 (1996)CrossRefMATH Girimaji, S.S., Zhou, Y.: Analysis and modeling of subgrid scalar mixing using numerical data. Phys. Fluids 8(5), 1224–1236 (1996)CrossRefMATH
32.
Zurück zum Zitat Gao, Y., Chakraborty, N., Swaminathan, N.: Algebraic closure of scalar dissipation rate for large eddy simulation of turbulent premixed combustion. Combust. Sci. Technol. 186, 1309–1337 (2014)CrossRef Gao, Y., Chakraborty, N., Swaminathan, N.: Algebraic closure of scalar dissipation rate for large eddy simulation of turbulent premixed combustion. Combust. Sci. Technol. 186, 1309–1337 (2014)CrossRef
33.
Zurück zum Zitat Bray, K.N.: Turbulent flows with premixed reactants. In: Libby, P.A., Williams, F.A. (eds.) Turbulent Reacting Flows, pp. 115–183. Springer Verlag, Berlin Heidelburg (1980)CrossRef Bray, K.N.: Turbulent flows with premixed reactants. In: Libby, P.A., Williams, F.A. (eds.) Turbulent Reacting Flows, pp. 115–183. Springer Verlag, Berlin Heidelburg (1980)CrossRef
34.
Zurück zum Zitat Dunstan, T.D., Minamoto, Y., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modelling for large eddy simulation of turbulent premixed flames. Proc. Combust. Inst. 34, 1193–1201 (2013)CrossRef Dunstan, T.D., Minamoto, Y., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modelling for large eddy simulation of turbulent premixed flames. Proc. Combust. Inst. 34, 1193–1201 (2013)CrossRef
35.
Zurück zum Zitat Gao, Y., Chakraborty, N., Swaminathan, N.: Dynamic closure of scalar dissipation rate for large eddy simulations of turbulent premixed combustion: a direct numerical simulations analysis. Flow Turbul. Combust. 95(4), 775–802 (2015)CrossRef Gao, Y., Chakraborty, N., Swaminathan, N.: Dynamic closure of scalar dissipation rate for large eddy simulations of turbulent premixed combustion: a direct numerical simulations analysis. Flow Turbul. Combust. 95(4), 775–802 (2015)CrossRef
36.
Zurück zum Zitat Gouldin, F.C., Bray, K.N.C., Chen, J.Y.: Chemical closure model for fractal flamelets. Combust. Flame 77(3-4), 241–259 (1989)CrossRef Gouldin, F.C., Bray, K.N.C., Chen, J.Y.: Chemical closure model for fractal flamelets. Combust. Flame 77(3-4), 241–259 (1989)CrossRef
37.
Zurück zum Zitat Weller, H.G., Tabor, G., Gosman, A.D., Fureby, C.: Application of a flame-wrinkling les combustion model to a turbulent mixing layer. Proc. Combust. Inst. 27(1), 899–907 (1998)CrossRef Weller, H.G., Tabor, G., Gosman, A.D., Fureby, C.: Application of a flame-wrinkling les combustion model to a turbulent mixing layer. Proc. Combust. Inst. 27(1), 899–907 (1998)CrossRef
38.
Zurück zum Zitat Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: Dynamic formulation. Combust. Flame 131(1-2), 181–197 (2002)CrossRef Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: Dynamic formulation. Combust. Flame 131(1-2), 181–197 (2002)CrossRef
39.
Zurück zum Zitat Chakraborty, N., Klein, M.: A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation. Phys. Fluids 20, 085108 (2008)CrossRefMATH Chakraborty, N., Klein, M.: A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation. Phys. Fluids 20, 085108 (2008)CrossRefMATH
40.
Zurück zum Zitat Vagelopoulos, C.M., Egolfopoulos, F.N., Law, C.K.: Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique. Proc. Combust. Inst. 25, 1341–1347 (1994)CrossRef Vagelopoulos, C.M., Egolfopoulos, F.N., Law, C.K.: Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique. Proc. Combust. Inst. 25, 1341–1347 (1994)CrossRef
41.
Zurück zum Zitat Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Modelling 1, 41–63 (1997)MathSciNetCrossRefMATH Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Modelling 1, 41–63 (1997)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Cao, R.R., Wang, H., Pope, S.B.: The effect of mixing models in PDF calculations of piloted jet flames. Proc. Combust. Inst. 31(1), 1543–1550 (2007)CrossRef Cao, R.R., Wang, H., Pope, S.B.: The effect of mixing models in PDF calculations of piloted jet flames. Proc. Combust. Inst. 31(1), 1543–1550 (2007)CrossRef
43.
Zurück zum Zitat Wang, H., Pope, S.B.: Lagrangian investigation of local extinction, re-ignition and auto-ignition in turbulent flames. Combust. Theory Model. 12(5), 857–882 (2008)MathSciNetCrossRefMATH Wang, H., Pope, S.B.: Lagrangian investigation of local extinction, re-ignition and auto-ignition in turbulent flames. Combust. Theory Model. 12(5), 857–882 (2008)MathSciNetCrossRefMATH
44.
Zurück zum Zitat Wang, H., Kim, K.: Effect of molecular transport on PDF modeling of turbulent non-premixed flames. Proc. Combust. Inst. 35(2), 1137–1145 (2014)CrossRef Wang, H., Kim, K.: Effect of molecular transport on PDF modeling of turbulent non-premixed flames. Proc. Combust. Inst. 35(2), 1137–1145 (2014)CrossRef
Metadaten
Titel
LES/PDF Modeling of Turbulent Premixed Flames with Locally Enhanced Mixing by Reaction
verfasst von
Haifeng Wang
Tejas Pant
Pei Zhang
Publikationsdatum
04.07.2017
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 1/2018
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-017-9831-0

Weitere Artikel der Ausgabe 1/2018

Flow, Turbulence and Combustion 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.