Skip to main content
Erschienen in: Journal of Computational Electronics 3/2017

17.06.2017

On fault-tolerant design of Exclusive-OR gates in QCA

verfasst von: Dharmendra Kumar, Debasis Mitra, Bhargab B. Bhattacharya

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Design paradigms of logic circuits with quantum-dot cellular automata (QCA) have been extensively studied in the recent past. Unfortunately, due to the lack of mature fabrication support, QCA-based circuits often suffer from various types of manufacturing defects and variations and, therefore, are unreliable and error-prone. QCA-based exclusive-OR (XOR) gates are frequently used in the construction of several computing subsystems such as adders, linear feedback shift registers, parity generators and checkers. However, none of the existing designs for QCA XOR gates have considered the issue of ensuring fault-tolerance. Simulation results also show that these designs can hardly tolerate any fault. We investigate the applicability of various existing fault-tolerant schemes such as triple modular redundancy, NAND multiplexing and majority multiplexing in the context of practical realization of QCA XOR gate. Our investigations reveal that these techniques incur prohibitively large area and delay and hence, they are unsuitable for practical scenarios. We propose here realistic designs of QCA XOR gates (in terms of area and delay) with significantly high fault-tolerance against all types of cell misplacement defects such as cell omission, cell displacement, cell misalignment and extra/additional cell deposition. Furthermore, the absence of any crossing in the proposed designs facilitates low-cost fabrication of such systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ahmad, F., Bhat, G.M.: Design of novel inverter and buffer in quantum-dot cellular automata (QCA). In: International Conference on Computing for Sustainable Global Development (INDIACom) (2015) Ahmad, F., Bhat, G.M.: Design of novel inverter and buffer in quantum-dot cellular automata (QCA). In: International Conference on Computing for Sustainable Global Development (INDIACom) (2015)
2.
Zurück zum Zitat Anduwan, G.A., et al.: Fault-tolerance and thermal characteristics of quantum-dot cellular automata devices. J. Appl. Phys. 107(1–9), 114306 (2010)CrossRef Anduwan, G.A., et al.: Fault-tolerance and thermal characteristics of quantum-dot cellular automata devices. J. Appl. Phys. 107(1–9), 114306 (2010)CrossRef
3.
Zurück zum Zitat Angizi, S., et al.: Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J. Low Power Electron. 10, 259–271 (2014)CrossRef Angizi, S., et al.: Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J. Low Power Electron. 10, 259–271 (2014)CrossRef
4.
Zurück zum Zitat Beigh, M.R., et al.: Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA). Circuits Syst. 4, 147–156 (2013)CrossRef Beigh, M.R., et al.: Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA). Circuits Syst. 4, 147–156 (2013)CrossRef
5.
Zurück zum Zitat Berarzadeh, M., et al.: A novel low power exclusive-or via cell level-based design function in quantum cellular automata. J. Comput. Electron. 6, 1–8 (2017) Berarzadeh, M., et al.: A novel low power exclusive-or via cell level-based design function in quantum cellular automata. J. Comput. Electron. 6, 1–8 (2017)
6.
Zurück zum Zitat Chabi, A.M., et al.: Towards ultra-efficient QCA reversible circuits. Microprocess. Microsyst. 49, 127–138 (2017)CrossRef Chabi, A.M., et al.: Towards ultra-efficient QCA reversible circuits. Microprocess. Microsyst. 49, 127–138 (2017)CrossRef
7.
Zurück zum Zitat Chaudhary, A., et al.: Eliminating wire crossings for molecular quantum-dot cellular automata implementation. In: International Conference on Computer-Aided Design, pp. 565–571 (2005) Chaudhary, A., et al.: Eliminating wire crossings for molecular quantum-dot cellular automata implementation. In: International Conference on Computer-Aided Design, pp. 565–571 (2005)
8.
Zurück zum Zitat Cho, H., Swartzlander, E.E.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009)MathSciNetCrossRefMATH Cho, H., Swartzlander, E.E.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Choi, M., Choi, M.: Scalability of globally asynchronous qca (quantum-dot cellular automata) adder design. J. Electron. Test. 24, 313–320 (2008)CrossRef Choi, M., Choi, M.: Scalability of globally asynchronous qca (quantum-dot cellular automata) adder design. J. Electron. Test. 24, 313–320 (2008)CrossRef
10.
Zurück zum Zitat Farazkish, R., Khodaparast, F.: Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess. Microsyst. 39, 426–433 (2015)CrossRef Farazkish, R., Khodaparast, F.: Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess. Microsyst. 39, 426–433 (2015)CrossRef
11.
Zurück zum Zitat Feinstein, D.Y., Thornton, M.A.: ESOP transformation to majority gates for quantum-dot cellular automata logic synthesis. In: Workshop on Applications of the Reed-Muller Expansion in Circuit Design and Representations and Methodology of Future Computing Technology RMW, pp. 43–50 (2007) Feinstein, D.Y., Thornton, M.A.: ESOP transformation to majority gates for quantum-dot cellular automata logic synthesis. In: Workshop on Applications of the Reed-Muller Expansion in Circuit Design and Representations and Methodology of Future Computing Technology RMW, pp. 43–50 (2007)
12.
Zurück zum Zitat Huang, J., et al.: Defect tolerance of QCA tiles. In: Design, Automation and Test in Europe, vol. 1, pp. 1–6 (2006) Huang, J., et al.: Defect tolerance of QCA tiles. In: Design, Automation and Test in Europe, vol. 1, pp. 1–6 (2006)
13.
Zurück zum Zitat Jagarlamudi, H.S., et al.: Quantum dot cellular automata based effective design of combinational and sequential logical structures. World Acad. Sci. Eng. Technol. 5, 1529–1533 (2011) Jagarlamudi, H.S., et al.: Quantum dot cellular automata based effective design of combinational and sequential logical structures. World Acad. Sci. Eng. Technol. 5, 1529–1533 (2011)
14.
Zurück zum Zitat Jahan, W.S., et al.: Circuit nanotechnology: QCA adder gate layout designs. IOSR J. Comput. Eng. 16, 70–78 (2014)CrossRef Jahan, W.S., et al.: Circuit nanotechnology: QCA adder gate layout designs. IOSR J. Comput. Eng. 16, 70–78 (2014)CrossRef
15.
Zurück zum Zitat Karim, F., et al.: Modeling and evaluating errors due to random clock shifts in quantum-dot cellular automata circuits. J. Electron. Test. 25, 55–66 (2009)CrossRef Karim, F., et al.: Modeling and evaluating errors due to random clock shifts in quantum-dot cellular automata circuits. J. Electron. Test. 25, 55–66 (2009)CrossRef
16.
Zurück zum Zitat Kianpour, M., Nadooshan, R.S.: Novel design of n-bit controllable inverter by quantum-dot cellular automata. Int. J. Nanosci. Nanotechnol. 10, 117–126 (2014)MATH Kianpour, M., Nadooshan, R.S.: Novel design of n-bit controllable inverter by quantum-dot cellular automata. Int. J. Nanosci. Nanotechnol. 10, 117–126 (2014)MATH
17.
Zurück zum Zitat Kumar, D., Mitra, D.: Design of a practical fault-tolerant adder in QCA. Microelectron. J. 53, 90–105 (2016)CrossRef Kumar, D., Mitra, D.: Design of a practical fault-tolerant adder in QCA. Microelectron. J. 53, 90–105 (2016)CrossRef
18.
Zurück zum Zitat LaRue, M., et al.: Stray charge in quantum-dot cellular automata: a validation of the intercellular Hartree approximation. IEEE Trans. Nanotechnol. 12(2), 225–233 (2013)CrossRef LaRue, M., et al.: Stray charge in quantum-dot cellular automata: a validation of the intercellular Hartree approximation. IEEE Trans. Nanotechnol. 12(2), 225–233 (2013)CrossRef
19.
Zurück zum Zitat Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85, 541–557 (1997)CrossRef Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85, 541–557 (1997)CrossRef
20.
Zurück zum Zitat Lent, C.S., et al.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)CrossRef Lent, C.S., et al.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)CrossRef
21.
Zurück zum Zitat Lim, L.A., et al.: Sequential circuit design using quantum-dot cellular automata (qca). In: IEEE International Conference on Circuits and Systems (ICCAS), pp. 162–167 (2012) Lim, L.A., et al.: Sequential circuit design using quantum-dot cellular automata (qca). In: IEEE International Conference on Circuits and Systems (ICCAS), pp. 162–167 (2012)
22.
Zurück zum Zitat Liu, W., et al.: A review of QCA adders and metrics. In: Asilomar Conference on Signals, Systems and Computers, pp. 747–751 (2012) Liu, W., et al.: A review of QCA adders and metrics. In: Asilomar Conference on Signals, Systems and Computers, pp. 747–751 (2012)
23.
Zurück zum Zitat Lyons, R.E., Venderkulk, W.: The use of triple modular redundancy to improve computer reliability. IBM J. 6, 200–209 (1962)CrossRefMATH Lyons, R.E., Venderkulk, W.: The use of triple modular redundancy to improve computer reliability. IBM J. 6, 200–209 (1962)CrossRefMATH
24.
Zurück zum Zitat Ma, X., Lombardi, F.: Fault tolerant schemes for QCA systems. In: International Symposium on Defect and Fault Tolerance of VLSI Systems, pp. 236–244 (2008) Ma, X., Lombardi, F.: Fault tolerant schemes for QCA systems. In: International Symposium on Defect and Fault Tolerance of VLSI Systems, pp. 236–244 (2008)
26.
Zurück zum Zitat Mano, M.M. (ed.): Digital Logic and Computer Design. Prentice Hall of India Pvt. Ltd., New Delhi (2004)MATH Mano, M.M. (ed.): Digital Logic and Computer Design. Prentice Hall of India Pvt. Ltd., New Delhi (2004)MATH
27.
Zurück zum Zitat Mohammadi, M., et al.: Design of non-restoring divider in quantum-dot cellular automata technology. IET Circuits Devices Syst. 11, 135–141 (2017)CrossRef Mohammadi, M., et al.: Design of non-restoring divider in quantum-dot cellular automata technology. IET Circuits Devices Syst. 11, 135–141 (2017)CrossRef
28.
Zurück zum Zitat Momenzadeh, M., et al.: Quantum cellular automata: new defects and faults for new devices. In: 18th International Parallel and Distributed Processing Symposium, pp. 207–214 (2004) Momenzadeh, M., et al.: Quantum cellular automata: new defects and faults for new devices. In: 18th International Parallel and Distributed Processing Symposium, pp. 207–214 (2004)
29.
Zurück zum Zitat Momenzadeh, M., et al.: Modeling QCA defects at molecular-level in combinational circuits. In: International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 208–216 (2005) Momenzadeh, M., et al.: Modeling QCA defects at molecular-level in combinational circuits. In: International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 208–216 (2005)
30.
Zurück zum Zitat Mustafa, M., Beigh, M.R.: Design and implementation of QCA based novel parity generator and checker circuit with minimum complexity and cell count. Indian J. Pure Appl. Phys. 51, 60–66 (2013) Mustafa, M., Beigh, M.R.: Design and implementation of QCA based novel parity generator and checker circuit with minimum complexity and cell count. Indian J. Pure Appl. Phys. 51, 60–66 (2013)
31.
Zurück zum Zitat Von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Automata Studies, vol. 34, pp. 43–98. Princeton University Press (1956) Von Neumann, J.: Probabilistic logics and the synthesis of reliable organisms from unreliable components. In: Automata Studies, vol. 34, pp. 43–98. Princeton University Press (1956)
32.
Zurück zum Zitat Pallavi, A., Muthukrishnan, N.M.: Implementation of code converters in QCAD. Int. J. Sci. Res. Dev. 2, 421–425 (2014) Pallavi, A., Muthukrishnan, N.M.: Implementation of code converters in QCAD. Int. J. Sci. Res. Dev. 2, 421–425 (2014)
33.
Zurück zum Zitat Roy, S., Beiu, V.: Majority multiplexing–economical redundant fault-tolerant designs for nanoarchitectures. IEEE Trans. Nanotechnol. 4(4), 441–451 (2005)CrossRef Roy, S., Beiu, V.: Majority multiplexing–economical redundant fault-tolerant designs for nanoarchitectures. IEEE Trans. Nanotechnol. 4(4), 441–451 (2005)CrossRef
34.
Zurück zum Zitat Sen, B., et al.: Efficient design of fault tolerant tiles in QCA. In: Annual IEEE India Conference (INDICON), pp. 1–6 (2014) Sen, B., et al.: Efficient design of fault tolerant tiles in QCA. In: Annual IEEE India Conference (INDICON), pp. 1–6 (2014)
35.
Zurück zum Zitat Sheikhfaal, S., et al.: Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J. 46, 462–471 (2015)CrossRef Sheikhfaal, S., et al.: Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J. 46, 462–471 (2015)CrossRef
36.
Zurück zum Zitat Shin, S.H., et al.: Design of exclusive-OR logic gate on quantum-dot cellular automata. Int. J. Control Autom. 8, 95–104 (2015)CrossRef Shin, S.H., et al.: Design of exclusive-OR logic gate on quantum-dot cellular automata. Int. J. Control Autom. 8, 95–104 (2015)CrossRef
37.
Zurück zum Zitat Singh, G., et al.: A novel robust exclusive-or function implementation in QCA nanotechnology with energy dissipation analysis. J. Comput. Electron. 15, 455–465 (2016)CrossRef Singh, G., et al.: A novel robust exclusive-or function implementation in QCA nanotechnology with energy dissipation analysis. J. Comput. Electron. 15, 455–465 (2016)CrossRef
38.
Zurück zum Zitat Tahoori, M.B., et al.: Testing of quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 432–442 (2004)CrossRef Tahoori, M.B., et al.: Testing of quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 432–442 (2004)CrossRef
39.
Zurück zum Zitat Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)CrossRef Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)CrossRef
40.
Zurück zum Zitat Venkataramani, P., Srivastava, S., Bhanja, S.: Sequential circuit design in quantum dot cellular automata. In: 8th IEEE Conference on Nanotechnology, pp. 534–537 (2008) Venkataramani, P., Srivastava, S., Bhanja, S.: Sequential circuit design in quantum dot cellular automata. In: 8th IEEE Conference on Nanotechnology, pp. 534–537 (2008)
41.
Zurück zum Zitat Walus, K., et al.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)CrossRef Walus, K., et al.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)CrossRef
Metadaten
Titel
On fault-tolerant design of Exclusive-OR gates in QCA
verfasst von
Dharmendra Kumar
Debasis Mitra
Bhargab B. Bhattacharya
Publikationsdatum
17.06.2017
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2017
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-1022-7

Weitere Artikel der Ausgabe 3/2017

Journal of Computational Electronics 3/2017 Zur Ausgabe

Neuer Inhalt