Skip to main content

04.04.2024 | Full Research Article

On the development of a novel benchmark design for crack quantification in additive manufacturing

verfasst von: Andrew Wall, Tony Dong, Michael J. Benoit

Erschienen in: Progress in Additive Manufacturing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solidification cracking (SC) is a defect that has been extensively studied in welding and casting and, consequently, standardized testing methods to quantify cracking have been developed for these processes. However, additive manufacturing (AM) processes currently lack any such test. The objective of the current study is to outline the development of a first-of-its-kind solidification cracking test for AM in the form of a benchmark specimen which aims to standardize quantification of solidification cracking in AM. This test serves as a novel method of crack quantification that specifically addresses the unique process characteristics of AM, such as scan strategy, geometric limitations, and layer reheating, as opposed to adopting tests designed for traditional manufacturing processes. The benchmark design utilized self-restraint to induce cracking at pre-defined locations, and was printed from Inconel 625 and 718 using laser directed energy deposition. Crack severity was quantified by optical microscopy, and it was found that the ratio of the linear crack length to the total crack length was consistently between 0.8 and 0.9. Further characterization revealed that the cracks propagated transgranularly along the melt pool boundaries. The commercially available finite-element software package Simufact Welding was used to simulate printing of the benchmark specimen using the directed energy deposition module and confirmed high levels of stress at the crack initiation locations. Based on the characterization and simulation results, it was determined that the cause of the observed cracks was likely due to ductile fracture rather than solidification cracks. Nevertheless, the benchmark was able to show a difference in the level of cracking between alloys and the ability to initiate cracks at pre-defined locations using geometrically induced restraint. Thus, it was concluded that while the existing benchmark design demonstrated progress towards a standardized test, further refinement to the design in order to improve reliability of SC formation is required.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Kou S (2015) A simple index for predicting the susceptibility to solidification cracking. Weld J 94:374–388 Kou S (2015) A simple index for predicting the susceptibility to solidification cracking. Weld J 94:374–388
4.
Zurück zum Zitat Lundin C, Savage W (1965) The varestraint test. Weld J Res Suppl 44:433-s–442-s Lundin C, Savage W (1965) The varestraint test. Weld J Res Suppl 44:433-s–442-s
5.
Zurück zum Zitat International Organization for Standardization (2005) ISO/TR 17641-3:2005 destructive tests on welds in metallic materials—hot cracking tests for weldments—arc welding processes—part 3: externally loaded tests International Organization for Standardization (2005) ISO/TR 17641-3:2005 destructive tests on welds in metallic materials—hot cracking tests for weldments—arc welding processes—part 3: externally loaded tests
8.
Zurück zum Zitat Wall A, Benoit MJ (2023) A review of existing solidification crack tests and analysis of their transferability to additive manufacturing. J Mater Process Technol 320:118090CrossRef Wall A, Benoit MJ (2023) A review of existing solidification crack tests and analysis of their transferability to additive manufacturing. J Mater Process Technol 320:118090CrossRef
11.
Zurück zum Zitat Houldcroft PT (1955) A simple cracking test for use with argon-arc welding. Br Weld J 2:471–475 Houldcroft PT (1955) A simple cracking test for use with argon-arc welding. Br Weld J 2:471–475
14.
Zurück zum Zitat Rappaz M, Drezet J-M, Grasso P, Jacot A, Stefanescu D (2003) Hot tearing and coalescence: two deeply-connected phenomena. Model Cast Weld Adv Solidif Process 53–60 Rappaz M, Drezet J-M, Grasso P, Jacot A, Stefanescu D (2003) Hot tearing and coalescence: two deeply-connected phenomena. Model Cast Weld Adv Solidif Process 53–60
15.
Zurück zum Zitat Carter LN, Attallah MM, Reed RC (2012) Laser powder bed fabrication of nickel-base superalloys: influence of parameters; characterisation, quantification and mitigation of cracking. Superalloys 2012(6):2826–2834 Carter LN, Attallah MM, Reed RC (2012) Laser powder bed fabrication of nickel-base superalloys: influence of parameters; characterisation, quantification and mitigation of cracking. Superalloys 2012(6):2826–2834
18.
Zurück zum Zitat Katgerman L, Eskin DG (2008) In search of the prediction of hot cracking in aluminium alloys. In: Bollinghaus T, Herold H, Cross CE, Lippold JC (eds) Hot cracking phenomena in welds II. Springer, Berlin Katgerman L, Eskin DG (2008) In search of the prediction of hot cracking in aluminium alloys. In: Bollinghaus T, Herold H, Cross CE, Lippold JC (eds) Hot cracking phenomena in welds II. Springer, Berlin
21.
Zurück zum Zitat Luskin TC (2013) Investigation of weldability in high-Cr Ni-base filler metals, Ph.D. Thesis. The Ohio State University Luskin TC (2013) Investigation of weldability in high-Cr Ni-base filler metals, Ph.D. Thesis. The Ohio State University
22.
Zurück zum Zitat Cieslak M (1991) The welding and solidification metallurgy of alloy 625. Weld J Res Suppl 2:49–56 Cieslak M (1991) The welding and solidification metallurgy of alloy 625. Weld J Res Suppl 2:49–56
24.
Zurück zum Zitat Kou S (2003) Solidification and liquation cracking issues in welding. Jom 55:37–42CrossRef Kou S (2003) Solidification and liquation cracking issues in welding. Jom 55:37–42CrossRef
30.
Zurück zum Zitat Young GA, Capobianco TE, Penik MA, Morris BW, McGee JJ (2008) The Mechanism of Ductility Dip Cracking in Nickel-Chromium Alloys. Weld J N Y 87(2):31 Young GA, Capobianco TE, Penik MA, Morris BW, McGee JJ (2008) The Mechanism of Ductility Dip Cracking in Nickel-Chromium Alloys. Weld J N Y 87(2):31
33.
Zurück zum Zitat Suyitno KWH, Katgerman L (2009) Integrated approach for prediction of hot tearing. Metall Mater Trans A 40:2388–2400CrossRef Suyitno KWH, Katgerman L (2009) Integrated approach for prediction of hot tearing. Metall Mater Trans A 40:2388–2400CrossRef
Metadaten
Titel
On the development of a novel benchmark design for crack quantification in additive manufacturing
verfasst von
Andrew Wall
Tony Dong
Michael J. Benoit
Publikationsdatum
04.04.2024
Verlag
Springer International Publishing
Erschienen in
Progress in Additive Manufacturing
Print ISSN: 2363-9512
Elektronische ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-024-00596-y

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.