Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2024

13.04.2023 | Technical Article

On the Strengthening Mechanisms and Interfacial Characteristics of TiB2/Hypoeutectic Al-Si Ceramic Composites

verfasst von: Lu Li, Xingguo Zhang, Baoqiang Xu, Rongfeng Zhou, Yehua Jiang, Zhentao Yuan, Xiao Wang, Bin Yang

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

xTiB2/Al-9Si composites were fabricated in this study using the mixed salt reaction method. With increasing TiB2 particle content, the size of the primary α-Al grains decreased correspondingly. The best refinement of the primary α-Al grains was achieved with the addition of 4 wt.% TiB2 particles, which resulted in the highest yield and tensile strength (172.3 and 255.3 MPa, respectively) and an elongation of 1.6%. In order to explore the TiB2(\(\overline{1 } 1 0 0\))/α-Al(\(\overline{1} \overline{1} 1\)) interfacial structure and to understand the potential of the heterogeneous nucleation of α-Al grains on TiB2 particles, the ideal work of adhesion (Wad), electronic structure and bonding properties of the TiB2(\(\overline{1} 1 0 0\))/α-Al(\(\overline{1} \overline{1} 1\)) interface were investigated utilizing density functional theory-based first-principles calculations. The calculation results demonstrated that the stacking model with a B-terminated interface had a relaxed interfacial distance of 2.093 Å, the work of adhesion of 1.24 J/m2 and the interfacial energy of 0.09 J/m2, thereby revealing the stability of this model. The calculated electron bonding indicated that strong and stable Al-B covalent bonds were generated at the interface, revealing the ability of α-Al grains to heterogeneously nucleate on TiB2 grains and the positive contribution of TiB2 particles to the grain refinement and strengthening mechanism of the Al-Si alloys. This study provides references for the in-depth study of ceramic particle-reinforced aluminum matrix composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X. Zhang, L.K. Huang, B. Zhang, Y.Z. Chen, S.Y. Duan, G. Liu, C.L. Yang, and F. Liu, Enhanced Strength and Ductility of A356 Alloy Due to Composite Effect of Near-Rapid Solidification and Thermo-Mechanical Treatment, Mater. Sci. Eng., A, 2019, 753, p 168–178. CrossRef X. Zhang, L.K. Huang, B. Zhang, Y.Z. Chen, S.Y. Duan, G. Liu, C.L. Yang, and F. Liu, Enhanced Strength and Ductility of A356 Alloy Due to Composite Effect of Near-Rapid Solidification and Thermo-Mechanical Treatment, Mater. Sci. Eng., A, 2019, 753, p 168–178. CrossRef
2.
Zurück zum Zitat K. Hu, X. Ma, T. Gao, Q. Xu, Z. Qian, Y. Wu, and X. Liu, Morphological Transformation Mechanism of Eutectic Si Phases in Al–Si Alloys by Nano-AlNp, J. Alloy. Compd., 2018, 765, p 113–120. CrossRef K. Hu, X. Ma, T. Gao, Q. Xu, Z. Qian, Y. Wu, and X. Liu, Morphological Transformation Mechanism of Eutectic Si Phases in Al–Si Alloys by Nano-AlNp, J. Alloy. Compd., 2018, 765, p 113–120. CrossRef
3.
Zurück zum Zitat Q. Li, F. Qiu, B.-X. Dong, X. Gao, S.-L. Shu, H.-Y. Yang, and Q.-C. Jiang, Processing, Multiscale Microstructure Refinement and Mechanical Property Enhancement of Hypoeutectic Al–Si Alloys via In Situ Bimodal-Sized TiB2 Particles, Mater. Sci. Eng., A, 2020, 777, 139081.CrossRef Q. Li, F. Qiu, B.-X. Dong, X. Gao, S.-L. Shu, H.-Y. Yang, and Q.-C. Jiang, Processing, Multiscale Microstructure Refinement and Mechanical Property Enhancement of Hypoeutectic Al–Si Alloys via In Situ Bimodal-Sized TiB2 Particles, Mater. Sci. Eng., A, 2020, 777, 139081.CrossRef
4.
Zurück zum Zitat V.K. Pandey, B.P. Patel, and S. Guruprasad, Role of Ceramic Particulate Reinforcements on Mechanical Properties and Fracture Behavior of Aluminum - Based Composites, Mater. Sci. Eng., A, 2019, 745, p 252–264. CrossRef V.K. Pandey, B.P. Patel, and S. Guruprasad, Role of Ceramic Particulate Reinforcements on Mechanical Properties and Fracture Behavior of Aluminum - Based Composites, Mater. Sci. Eng., A, 2019, 745, p 252–264. CrossRef
5.
Zurück zum Zitat C.-S. Kim, K. Cho, M.H. Manjili, and M. Nezafati, Mechanical Performance of Particulate-Reinforced Al Metal-Matrix Composites (MMCs) and Al Metal-Matrix Nano-Composites (MMNCs), J. Mater. Sci., 2017, 52(23), p 13319–13349. CrossRef C.-S. Kim, K. Cho, M.H. Manjili, and M. Nezafati, Mechanical Performance of Particulate-Reinforced Al Metal-Matrix Composites (MMCs) and Al Metal-Matrix Nano-Composites (MMNCs), J. Mater. Sci., 2017, 52(23), p 13319–13349. CrossRef
6.
Zurück zum Zitat P. Nash, and N. Zhao, 1000 at 1000: Particulate-Reinforced Metal Matrix Composites, J. Mater. Sci., 2020, 55(34), p 16059–16062. CrossRef P. Nash, and N. Zhao, 1000 at 1000: Particulate-Reinforced Metal Matrix Composites, J. Mater. Sci., 2020, 55(34), p 16059–16062. CrossRef
7.
Zurück zum Zitat D. Ravnikar, N.B. Dahotre, and J. Grum, Laser Coating of Aluminum Alloy EN AW 6082–T651 with TiB2 and TiC: Microstructure and Mechanical Properties, Appl. Surf. Sci., 2013, 282, p 914–922. CrossRef D. Ravnikar, N.B. Dahotre, and J. Grum, Laser Coating of Aluminum Alloy EN AW 6082–T651 with TiB2 and TiC: Microstructure and Mechanical Properties, Appl. Surf. Sci., 2013, 282, p 914–922. CrossRef
8.
Zurück zum Zitat H. Yi, N. Ma, Y. Zhang, X. Li, and H. Wang, Effective Elastic Moduli of Al–Si Composites Reinforced In Situ with TiB2 Particles, Scripta Mater., 2006, 54(6), p 1093–1097. CrossRef H. Yi, N. Ma, Y. Zhang, X. Li, and H. Wang, Effective Elastic Moduli of Al–Si Composites Reinforced In Situ with TiB2 Particles, Scripta Mater., 2006, 54(6), p 1093–1097. CrossRef
9.
Zurück zum Zitat H. Tong, F. Qiu, R. Zuo, P. Shen, X. Cong, J. Liu, H. Yang, and Q. Jiang, RETRACTED: The Effect and Mechanism of Alloying Elements on Al/SiC Interfacial Reaction in Al Melt, Appl. Surf. Sci., 2020, 501, 144265.CrossRef H. Tong, F. Qiu, R. Zuo, P. Shen, X. Cong, J. Liu, H. Yang, and Q. Jiang, RETRACTED: The Effect and Mechanism of Alloying Elements on Al/SiC Interfacial Reaction in Al Melt, Appl. Surf. Sci., 2020, 501, 144265.CrossRef
10.
Zurück zum Zitat M.H. Sohi, S.M.H. Hojjatzadeh, S.S. Moosavifar, and S. Heshmati-Manesh, Liquid Phase Surface Melting of AA8011 Aluminum Alloy by Addition of Al/Al2O3 Nano-Composite Powders Synthesized by High-Energy Milling, Appl. Surf. Sci., 2014, 313, p 76–84. CrossRef M.H. Sohi, S.M.H. Hojjatzadeh, S.S. Moosavifar, and S. Heshmati-Manesh, Liquid Phase Surface Melting of AA8011 Aluminum Alloy by Addition of Al/Al2O3 Nano-Composite Powders Synthesized by High-Energy Milling, Appl. Surf. Sci., 2014, 313, p 76–84. CrossRef
11.
Zurück zum Zitat Z.J. Wang, S. Liu, Z.X. Qiu, H.Y. Sun, and W.C. Liu, First-Principles Calculations on the Interface of the Al/TiC Aluminum Matrix Composites, Appl. Surf. Sci., 2020, 505, 144502.CrossRef Z.J. Wang, S. Liu, Z.X. Qiu, H.Y. Sun, and W.C. Liu, First-Principles Calculations on the Interface of the Al/TiC Aluminum Matrix Composites, Appl. Surf. Sci., 2020, 505, 144502.CrossRef
12.
Zurück zum Zitat Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, and T. Hashimoto, Grain Refining Mechanism in the Al/Al–Ti–B System, Acta Mater., 2015, 84, p 292–304. CrossRef Z. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, and T. Hashimoto, Grain Refining Mechanism in the Al/Al–Ti–B System, Acta Mater., 2015, 84, p 292–304. CrossRef
13.
Zurück zum Zitat M.K. Hullur, D.M. Goudar, K. Venkateshwaralu, S.A. Kori, Sliding Wear Behaviour of In Situ TiB2 Reinforced Hypoeutectic Al-Si Alloy Composites, International Journal of Metalcasting, (2022) M.K. Hullur, D.M. Goudar, K. Venkateshwaralu, S.A. Kori, Sliding Wear Behaviour of In Situ TiB2 Reinforced Hypoeutectic Al-Si Alloy Composites, International Journal of Metalcasting, (2022)
14.
Zurück zum Zitat M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, N. Ma, and H. Wang, Mechanical Properties of in-situ TiB2/A356 Composites, Mater. Sci. Eng., A, 2014, 590, p 246–254. CrossRef M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, N. Ma, and H. Wang, Mechanical Properties of in-situ TiB2/A356 Composites, Mater. Sci. Eng., A, 2014, 590, p 246–254. CrossRef
15.
Zurück zum Zitat R. Liu, X. Yin, K. Feng, and R. Xu, First-Principles Calculations on Mg/TiB2 Interfaces, Comput. Mater. Sci., 2018, 149, p 373–378. CrossRef R. Liu, X. Yin, K. Feng, and R. Xu, First-Principles Calculations on Mg/TiB2 Interfaces, Comput. Mater. Sci., 2018, 149, p 373–378. CrossRef
16.
Zurück zum Zitat A.L. Greer, Overview: Application of Heterogeneous Nucleation in Grain-Refining of Metals, J Chem Phys, 2016, 145(21), 211704.PubMedCrossRef A.L. Greer, Overview: Application of Heterogeneous Nucleation in Grain-Refining of Metals, J Chem Phys, 2016, 145(21), 211704.PubMedCrossRef
17.
Zurück zum Zitat S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, and M.C. Payne, First principles methods using, CASTEP, 2005, 220(5–6), p 567–570. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, and M.C. Payne, First principles methods using, CASTEP, 2005, 220(5–6), p 567–570.
18.
Zurück zum Zitat J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation, Phys. Rev. B, 1992, 46(11), p 6671–6687. CrossRef J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation, Phys. Rev. B, 1992, 46(11), p 6671–6687. CrossRef
19.
Zurück zum Zitat J.P. Perdew, K. Burke, and Y. Wang, Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System, Phys. Rev. B, 1996, 54(23), p 16533–16539. CrossRef J.P. Perdew, K. Burke, and Y. Wang, Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System, Phys. Rev. B, 1996, 54(23), p 16533–16539. CrossRef
20.
Zurück zum Zitat S. Saib, and N. Bouarissa, Electronic Properties of GaN at High-Pressure from Local Density and Generalized Gradient Approximations, Comput. Mater. Sci., 2006, 37(4), p 613–617. CrossRef S. Saib, and N. Bouarissa, Electronic Properties of GaN at High-Pressure from Local Density and Generalized Gradient Approximations, Comput. Mater. Sci., 2006, 37(4), p 613–617. CrossRef
21.
Zurück zum Zitat B. Liu, and J. Yang, Mg on Adhesion of Al(111)/3C-SiC(111) Interfaces from First Principles Study, J. Alloy. Compd., 2019, 791, p 530–539. CrossRef B. Liu, and J. Yang, Mg on Adhesion of Al(111)/3C-SiC(111) Interfaces from First Principles Study, J. Alloy. Compd., 2019, 791, p 530–539. CrossRef
22.
Zurück zum Zitat S. Otani, and Y. Ishizawa, Preparation of TiB2 Single Crystals by the Floating Zone Method, J. Cryst. Growth, 1994, 140(3), p 451–453. CrossRef S. Otani, and Y. Ishizawa, Preparation of TiB2 Single Crystals by the Floating Zone Method, J. Cryst. Growth, 1994, 140(3), p 451–453. CrossRef
23.
Zurück zum Zitat Y.H. Duan, Y. Sun, Z.Z. Guo, M.J. Peng, P.X. Zhu, and J.H. He, Elastic Constants of AlB2-Type Compounds from First-Principles Calculations, Comput. Mater. Sci., 2012, 51(1), p 112–116. CrossRef Y.H. Duan, Y. Sun, Z.Z. Guo, M.J. Peng, P.X. Zhu, and J.H. He, Elastic Constants of AlB2-Type Compounds from First-Principles Calculations, Comput. Mater. Sci., 2012, 51(1), p 112–116. CrossRef
24.
Zurück zum Zitat S.-L. Li, P. Hu, T. Liu, Q.-S. Shi, X.-M. Dang, B.-l. Hu, W. Zhang, K.-S. Wang, Formation Mechanism of Coronal Composite Secondary Phase in Titanium-Zirconium-Molybdenum Alloy, Mater. Character., 193, (2022) S.-L. Li, P. Hu, T. Liu, Q.-S. Shi, X.-M. Dang, B.-l. Hu, W. Zhang, K.-S. Wang, Formation Mechanism of Coronal Composite Secondary Phase in Titanium-Zirconium-Molybdenum Alloy, Mater. Character., 193, (2022)
25.
Zurück zum Zitat P. Xiao, Y. Gao, F. Xu, S. Yang, B. Li, Y. Li, Z. Huang, and Q. Zheng, An Investigation on Grain Refinement Mechanism of TiB2 Particulate Reinforced AZ91 Composites and Its Effect on Mechanical Properties, J. Alloy. Compd., 2019, 780, p 237–244. CrossRef P. Xiao, Y. Gao, F. Xu, S. Yang, B. Li, Y. Li, Z. Huang, and Q. Zheng, An Investigation on Grain Refinement Mechanism of TiB2 Particulate Reinforced AZ91 Composites and Its Effect on Mechanical Properties, J. Alloy. Compd., 2019, 780, p 237–244. CrossRef
26.
Zurück zum Zitat Y. Wang, M. Xia, Z. Fan, X. Zhou, and G.E. Thompson, The Effect of Al8Mn5 Intermetallic Particles on Grain Size of as-cast Mg–Al–Zn AZ91D Alloy, Intermetallics, 2010, 18(8), p 1683–1689. CrossRef Y. Wang, M. Xia, Z. Fan, X. Zhou, and G.E. Thompson, The Effect of Al8Mn5 Intermetallic Particles on Grain Size of as-cast Mg–Al–Zn AZ91D Alloy, Intermetallics, 2010, 18(8), p 1683–1689. CrossRef
27.
Zurück zum Zitat K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung, Mechanical Behavior and Strengthening Mechanisms in Ultrafine Grain Precipitation-Strengthened Aluminum Alloy, Acta Mater., 2014, 62, p 141–155. CrossRef K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung, Mechanical Behavior and Strengthening Mechanisms in Ultrafine Grain Precipitation-Strengthened Aluminum Alloy, Acta Mater., 2014, 62, p 141–155. CrossRef
28.
Zurück zum Zitat K. Zhao, Z. Duan, J. Liu, G. Kang, and L. An, Strengthening Mechanisms of 15 vol.% Al2O3 Nanoparticles Reinforced Aluminum Matrix Nanocomposite Fabricated by High Energy Ball Milling and Vacuum Hot Pressing, Acta Metall. Sinica (Engl. Lett.), 2021, 35(6), p 915–921. CrossRef K. Zhao, Z. Duan, J. Liu, G. Kang, and L. An, Strengthening Mechanisms of 15 vol.% Al2O3 Nanoparticles Reinforced Aluminum Matrix Nanocomposite Fabricated by High Energy Ball Milling and Vacuum Hot Pressing, Acta Metall. Sinica (Engl. Lett.), 2021, 35(6), p 915–921. CrossRef
29.
Zurück zum Zitat K. Luo, S. Liu, H. Xiong, Y. Zhang, C. Kong, and H. Yu, Mechanical Properties and Strengthening Mechanism of Aluminum Matrix Composites Reinforced by High-entropy Alloy Particles, Met. Mater. Int., 2022, 28(11), p 2811–2821. CrossRef K. Luo, S. Liu, H. Xiong, Y. Zhang, C. Kong, and H. Yu, Mechanical Properties and Strengthening Mechanism of Aluminum Matrix Composites Reinforced by High-entropy Alloy Particles, Met. Mater. Int., 2022, 28(11), p 2811–2821. CrossRef
30.
Zurück zum Zitat C. Goh, J. Wei, L. Lee, and M. Gupta, Properties and Deformation Behaviour of Mg–Y2O3 Nanocomposites, Acta Mater., 2007, 55(15), p 5115–5121. CrossRef C. Goh, J. Wei, L. Lee, and M. Gupta, Properties and Deformation Behaviour of Mg–Y2O3 Nanocomposites, Acta Mater., 2007, 55(15), p 5115–5121. CrossRef
31.
Zurück zum Zitat S.K. Sahoo, B.N. Sahoo, S.K. Panigrahi, Effect of In-Situ Sub-Micron sized TiB2 Reinforcement on Microstructure and Mechanical Properties in ZE41 Magnesium Matrix Composites, Mater. Sci. Eng.: A, 773, (2020) S.K. Sahoo, B.N. Sahoo, S.K. Panigrahi, Effect of In-Situ Sub-Micron sized TiB2 Reinforcement on Microstructure and Mechanical Properties in ZE41 Magnesium Matrix Composites, Mater. Sci. Eng.: A, 773, (2020)
32.
Zurück zum Zitat O. Matvienko, O. Daneyko, T. Kovalevskaya, A. Khrustalyov, I. Zhukov, A. Vorozhtsov, Investigation of Stresses Induced Due to the Mismatch of the Coefficients of Thermal Expansion of the Matrix and the Strengthening Particle in Aluminum-Based Composites, Metals, 11(2), (2021) O. Matvienko, O. Daneyko, T. Kovalevskaya, A. Khrustalyov, I. Zhukov, A. Vorozhtsov, Investigation of Stresses Induced Due to the Mismatch of the Coefficients of Thermal Expansion of the Matrix and the Strengthening Particle in Aluminum-Based Composites, Metals, 11(2), (2021)
33.
Zurück zum Zitat K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero-Sesin, and Z. Horita, Influence of Dislocation–Solute Atom Interactions and Stacking Fault Energy on Grain Size of Single-Phase Alloys After Severe Plastic Deformation Using High-Pressure Torsion, Acta Mater., 2014, 69, p 68–77. CrossRef K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero-Sesin, and Z. Horita, Influence of Dislocation–Solute Atom Interactions and Stacking Fault Energy on Grain Size of Single-Phase Alloys After Severe Plastic Deformation Using High-Pressure Torsion, Acta Mater., 2014, 69, p 68–77. CrossRef
34.
Zurück zum Zitat T. Zhang, K. Feng, Z. Li, and H. Kokawa, Effects of In-Situ Synthesized TiB2 on Crystallographic Orientation, Grain Size and Nanohardness of AA6061 Alloy by Laser Surface Alloying, Mater. Lett., 2019, 253, p 213–217. CrossRef T. Zhang, K. Feng, Z. Li, and H. Kokawa, Effects of In-Situ Synthesized TiB2 on Crystallographic Orientation, Grain Size and Nanohardness of AA6061 Alloy by Laser Surface Alloying, Mater. Lett., 2019, 253, p 213–217. CrossRef
35.
Zurück zum Zitat Z. Zhang, and D.L. Chen, Contribution of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites, Mater. Sci. Eng., A, 2008, 483–484, p 148–152. CrossRef Z. Zhang, and D.L. Chen, Contribution of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites, Mater. Sci. Eng., A, 2008, 483–484, p 148–152. CrossRef
36.
Zurück zum Zitat S. Amirkhanlou, S. Ji, Y. Zhang, D. Watson, and Z. Fan, High Modulus Al Si Mg Cu/Mg2Si TiB2 Hybrid Nanocomposite: Microstructural Characteristics and Micromechanics-Based Analysis, J. Alloy. Compd., 2017, 694, p 313–324. CrossRef S. Amirkhanlou, S. Ji, Y. Zhang, D. Watson, and Z. Fan, High Modulus Al Si Mg Cu/Mg2Si TiB2 Hybrid Nanocomposite: Microstructural Characteristics and Micromechanics-Based Analysis, J. Alloy. Compd., 2017, 694, p 313–324. CrossRef
37.
Zurück zum Zitat B.L.J.M.T. Bramfitt, The Effect of Carbide and Nitride Additions on the Heterogeneous Nucleation Behavior of Liquid Iron, 1(7), 1987–1995 (1970) B.L.J.M.T. Bramfitt, The Effect of Carbide and Nitride Additions on the Heterogeneous Nucleation Behavior of Liquid Iron, 1(7), 1987–1995 (1970)
38.
Zurück zum Zitat J. Zhang, Q. Xu, Y. Hu, C. Mao, X. Zhou, X. Lu, M. Zhang, Y. Tong, K. Tang, and P. Peng, Interfacial Bonding Mechanism and Adhesive Transfer of Brazed Diamond with Ni-Based Filler Alloy: First-Principles and Experimental Perspective, Carbon, 2019, 153, p 104–115. CrossRef J. Zhang, Q. Xu, Y. Hu, C. Mao, X. Zhou, X. Lu, M. Zhang, Y. Tong, K. Tang, and P. Peng, Interfacial Bonding Mechanism and Adhesive Transfer of Brazed Diamond with Ni-Based Filler Alloy: First-Principles and Experimental Perspective, Carbon, 2019, 153, p 104–115. CrossRef
39.
Zurück zum Zitat H. Yan, W. Guo, T. Luan, X. Ma, G. Xu, X. Leng, W. Zhao, J. Yan, Strengthening Mechanism of Al/Sn Interfaces: Study from Experiments and First-Principles Calculation, Mater. Des., 212, (2021) H. Yan, W. Guo, T. Luan, X. Ma, G. Xu, X. Leng, W. Zhao, J. Yan, Strengthening Mechanism of Al/Sn Interfaces: Study from Experiments and First-Principles Calculation, Mater. Des., 212, (2021)
40.
Zurück zum Zitat K. Lu, C. Shen, Y. He, S. Huang, Y. Ba, Effect of Solute Elements (Cr, Mo, Fe, Co) on the Adhesion Properties of WC/Ni-Based Binder Interface: A First-Principles Study, Int. J. Refract. Metals Hard Mater., 98, (2021) K. Lu, C. Shen, Y. He, S. Huang, Y. Ba, Effect of Solute Elements (Cr, Mo, Fe, Co) on the Adhesion Properties of WC/Ni-Based Binder Interface: A First-Principles Study, Int. J. Refract. Metals Hard Mater., 98, (2021)
41.
Zurück zum Zitat X. Song, Y. Han, X. Wang, W. Liu, J. Wu, and H. Cui, First-Principles Study of Adhesion Strength and Stability of the TiB2/TiC Interface in Composite Materials, Ceram. Int., 2018, 44(2), p 1756–1763. CrossRef X. Song, Y. Han, X. Wang, W. Liu, J. Wu, and H. Cui, First-Principles Study of Adhesion Strength and Stability of the TiB2/TiC Interface in Composite Materials, Ceram. Int., 2018, 44(2), p 1756–1763. CrossRef
42.
Zurück zum Zitat H.-H. Xiong, H.-N. Zhang, and J.-H. Dong, Adhesion Strength and Stability of TiB2/TiC Interface in Composite Coatings by First Principles Calculation, Comput. Mater. Sci., 2017, 127, p 244–250. CrossRef H.-H. Xiong, H.-N. Zhang, and J.-H. Dong, Adhesion Strength and Stability of TiB2/TiC Interface in Composite Coatings by First Principles Calculation, Comput. Mater. Sci., 2017, 127, p 244–250. CrossRef
43.
Zurück zum Zitat K. Zhang, and Y. Zhan, Adhesion Strength and Stability of Cu(111)/TiC(111) Interface in Composite Coatings by First Principles Study, Vacuum, 2019, 165, p 215–222. CrossRef K. Zhang, and Y. Zhan, Adhesion Strength and Stability of Cu(111)/TiC(111) Interface in Composite Coatings by First Principles Study, Vacuum, 2019, 165, p 215–222. CrossRef
44.
Zurück zum Zitat Z. Li, J. Feng, Z. Wu, M. Pang, D. Liu, W. Yang, Y. Zhan, The Stability and Electronic Structure of Cu(200)/AuCu(200) Interface: An Insight from First-Principle Calculation, Materials (Basel), 15(4), (2022) Z. Li, J. Feng, Z. Wu, M. Pang, D. Liu, W. Yang, Y. Zhan, The Stability and Electronic Structure of Cu(200)/AuCu(200) Interface: An Insight from First-Principle Calculation, Materials (Basel), 15(4), (2022)
45.
Zurück zum Zitat Y. Xu, S. Wei, Z. Han, L. Xu, First Principles Calculations on Al/TiB2 Interfaces, Indian J. Phys., 1–8 (2022) Y. Xu, S. Wei, Z. Han, L. Xu, First Principles Calculations on Al/TiB2 Interfaces, Indian J. Phys., 1–8 (2022)
46.
Zurück zum Zitat T. Yang, X. Chen, W. Li, X. Han, and P. Liu, First-Principles Calculations to Investigate the Interfacial Energy and Electronic Properties of Mg/AlN Interface, J. Phys. Chem. Solids, 2022, 167, 110705.CrossRef T. Yang, X. Chen, W. Li, X. Han, and P. Liu, First-Principles Calculations to Investigate the Interfacial Energy and Electronic Properties of Mg/AlN Interface, J. Phys. Chem. Solids, 2022, 167, 110705.CrossRef
47.
Zurück zum Zitat Z. Shi, S. Liu, Y. Zhou, and Q. Yang, First-Principles Calculation on the Relationships of h-WC/γ-Fe Interface, J. Phys. Chem. Solids, 2018, 123, p 11–18. CrossRef Z. Shi, S. Liu, Y. Zhou, and Q. Yang, First-Principles Calculation on the Relationships of h-WC/γ-Fe Interface, J. Phys. Chem. Solids, 2018, 123, p 11–18. CrossRef
48.
Zurück zum Zitat F. Vincenzo, and M. Methfessel, Extracting Convergent Surface Energies from Slab Calculations, J. Phys.: Condens. Matter, 1996, 8(36), p 6525. F. Vincenzo, and M. Methfessel, Extracting Convergent Surface Energies from Slab Calculations, J. Phys.: Condens. Matter, 1996, 8(36), p 6525.
49.
Zurück zum Zitat Y. Sun, L. Bao, Z. Kong, and Y. Duan, Adhesion Strength, Stability and Electronic Properties of α-Mg/Mg2Pb Interface from First-Principles Calculation, J. Mater. Res., 2022, 37(11), p 1859–1867. CrossRef Y. Sun, L. Bao, Z. Kong, and Y. Duan, Adhesion Strength, Stability and Electronic Properties of α-Mg/Mg2Pb Interface from First-Principles Calculation, J. Mater. Res., 2022, 37(11), p 1859–1867. CrossRef
50.
Zurück zum Zitat N. Wang, L. Dong, C.K. Gao, and D.J. Li, A Study of Structure, Energy and Electronic Properties of TiB2/c-BN Interface by First Principles Calculations, Opt. Mater., 2014, 36(8), p 1459–1462. CrossRef N. Wang, L. Dong, C.K. Gao, and D.J. Li, A Study of Structure, Energy and Electronic Properties of TiB2/c-BN Interface by First Principles Calculations, Opt. Mater., 2014, 36(8), p 1459–1462. CrossRef
51.
Zurück zum Zitat Z. Yu, W. Guo, S. Yang, H. Xue, and X. Zhang, Study on the Bonding Properties of ZrB2 (0001)/ZrC (111) Interface via First-Principles Calculations, Mater. Chem. Phys., 2021, 269, 124755.CrossRef Z. Yu, W. Guo, S. Yang, H. Xue, and X. Zhang, Study on the Bonding Properties of ZrB2 (0001)/ZrC (111) Interface via First-Principles Calculations, Mater. Chem. Phys., 2021, 269, 124755.CrossRef
52.
Zurück zum Zitat N. Eustathopoulos, L. Coudurier, J.C. Joud, and P. Desré, Tension Interfaciale Solide-Liquide des Systémes Al-Sn, Al-In et Al-Sn-In, J. Cryst. Growth, 1976, 33(1), p 105–115. CrossRef N. Eustathopoulos, L. Coudurier, J.C. Joud, and P. Desré, Tension Interfaciale Solide-Liquide des Systémes Al-Sn, Al-In et Al-Sn-In, J. Cryst. Growth, 1976, 33(1), p 105–115. CrossRef
Metadaten
Titel
On the Strengthening Mechanisms and Interfacial Characteristics of TiB2/Hypoeutectic Al-Si Ceramic Composites
verfasst von
Lu Li
Xingguo Zhang
Baoqiang Xu
Rongfeng Zhou
Yehua Jiang
Zhentao Yuan
Xiao Wang
Bin Yang
Publikationsdatum
13.04.2023
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2024
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08162-3

Weitere Artikel der Ausgabe 6/2024

Journal of Materials Engineering and Performance 6/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.