Skip to main content

2018 | OriginalPaper | Buchkapitel

19. On the Theory and Modelling of Flame Acceleration and Deflagration-to-Detonation Transition

verfasst von : V’yacheslav (Slava) B. Akkerman

Erschienen in: Modeling and Simulation of Turbulent Combustion

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Prevention of spontaneous premixed flame acceleration (FA) and deflagration (flame)-to-detonation transition (DDT) would avoid thousands of fatalities and injuries that occur every year in numerous disasters such as accidental mining or power plants explosions. On the other hand, promotion of FA and DDT can be energeticallyefficiently employed in the emerging technologies such as pulse-detonation engines and micro-combustors. Fundamentally, the DDT applications range from terrestrial burning and inertial confined fusion to thermonuclear supernovae and crystals of molecular/nano-magnets. In all these respects, the physical understanding and quantitative description of FA and DDT are critically needed from both practical and fundamental viewpoints. This need is addressed here, with a focus on combustion tubes/channels as the primary geometry. Specifically, various mechanisms of FA in pipes such as those due to (i) wall friction, (ii) in-built obstacles, and (iii) a finger flame shape are described, with various stages of FA and DDT scenarios being simulated and quantified. The locus and timing of detonation initiation, triggered by an accelerating flame front, are prescribed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akkerman V, Bychkov V, Petchenko A, Eriksson LE (2006a) Flame oscillations in tubes with nonslip at the walls. Combust Flame 145:675CrossRef Akkerman V, Bychkov V, Petchenko A, Eriksson LE (2006a) Flame oscillations in tubes with nonslip at the walls. Combust Flame 145:675CrossRef
Zurück zum Zitat Akkerman V, Bychkov V, Petchenko A, Eriksson LE (2006b) Accelerating flames in cylindrical tubes with nonslip at the walls. Combust Flame 145:206CrossRef Akkerman V, Bychkov V, Petchenko A, Eriksson LE (2006b) Accelerating flames in cylindrical tubes with nonslip at the walls. Combust Flame 145:206CrossRef
Zurück zum Zitat Akkerman V, Law CK, Bychkov V, Eriksson LE (2010) Analysis of flame acceleration induced by wall friction in open tubes. Phys Fluids 22:053606CrossRefMATH Akkerman V, Law CK, Bychkov V, Eriksson LE (2010) Analysis of flame acceleration induced by wall friction in open tubes. Phys Fluids 22:053606CrossRefMATH
Zurück zum Zitat Bilgili S, Demirgok B, Valiev D, Bychkov V, Akkerman V (2015) Effect of Lewis number on the flame acceleration in channels. 9th US National Combustion Meeting, Cincinnati, OH, USA, May 17–20, 2015, Paper 3E08 Bilgili S, Demirgok B, Valiev D, Bychkov V, Akkerman V (2015) Effect of Lewis number on the flame acceleration in channels. 9th US National Combustion Meeting, Cincinnati, OH, USA, May 17–20, 2015, Paper 3E08
Zurück zum Zitat Brailovsky I, Sivashinsky GI (2000) Hydraulic resistance as a mechanism for deflagration-to-detonation transition. Combust Flame 122:492CrossRef Brailovsky I, Sivashinsky GI (2000) Hydraulic resistance as a mechanism for deflagration-to-detonation transition. Combust Flame 122:492CrossRef
Zurück zum Zitat Bychkov V, Petchenko A, Akkerman V, Eriksson LE (2005) Theory and modeling of accelerating flames in tubes. Phys Rev E 72:046307MathSciNetCrossRef Bychkov V, Petchenko A, Akkerman V, Eriksson LE (2005) Theory and modeling of accelerating flames in tubes. Phys Rev E 72:046307MathSciNetCrossRef
Zurück zum Zitat Bychkov V, Akkerman V, Fru G, Petchenko A, Eriksson LE (2007) Flame acceleration in the early stages of burning in tubes. Combust Flame 150:263CrossRef Bychkov V, Akkerman V, Fru G, Petchenko A, Eriksson LE (2007) Flame acceleration in the early stages of burning in tubes. Combust Flame 150:263CrossRef
Zurück zum Zitat Bychkov V, Valiev D, Eriksson LE (2008) Physical mechanism of ultrafast flame acceleration. Phys Rev Lett 101:164501CrossRef Bychkov V, Valiev D, Eriksson LE (2008) Physical mechanism of ultrafast flame acceleration. Phys Rev Lett 101:164501CrossRef
Zurück zum Zitat Bychkov V, Akkerman V, Valiev D, Law CK (2010a) Role of compressibility in moderating flame acceleration in tubes. Phys Rev E 81:026309CrossRef Bychkov V, Akkerman V, Valiev D, Law CK (2010a) Role of compressibility in moderating flame acceleration in tubes. Phys Rev E 81:026309CrossRef
Zurück zum Zitat Bychkov V, Akkerman V, Valiev D, Law CK (2010b) Influence of gas compression on flame acceleration in channels with obstacles. Combust Flame 157:2008CrossRef Bychkov V, Akkerman V, Valiev D, Law CK (2010b) Influence of gas compression on flame acceleration in channels with obstacles. Combust Flame 157:2008CrossRef
Zurück zum Zitat Bychkov V, Akkerman V, Valiev D, Law CK (2012) Gas compression moderates flame acceleration in deflagration-to-detonation transition. Combust Sci Technol 184:1066CrossRef Bychkov V, Akkerman V, Valiev D, Law CK (2012) Gas compression moderates flame acceleration in deflagration-to-detonation transition. Combust Sci Technol 184:1066CrossRef
Zurück zum Zitat Clavin P, Searby G (2016) Combustion waves and fronts in flows: flames, shocks, detonations, ablation fronts and explosion of stars, 1st ed. Cambridge University Press Clavin P, Searby G (2016) Combustion waves and fronts in flows: flames, shocks, detonations, ablation fronts and explosion of stars, 1st ed. Cambridge University Press
Zurück zum Zitat Dion C, Demirgok B, Akkerman V, Valiev D, Bychkov V (2015) Acceleration and extinction of flames in channels with cold walls. 25th Internation Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Leeds, UK, Aug. 2–7, 2015, Paper 222 Dion C, Demirgok B, Akkerman V, Valiev D, Bychkov V (2015) Acceleration and extinction of flames in channels with cold walls. 25th Internation Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Leeds, UK, Aug. 2–7, 2015, Paper 222
Zurück zum Zitat Dorofeev S (2011) Flame acceleration and explosion safety applications. Proc. Comb. Inst. 33:2161CrossRef Dorofeev S (2011) Flame acceleration and explosion safety applications. Proc. Comb. Inst. 33:2161CrossRef
Zurück zum Zitat Gamezo V, Ogawa T, Oran ES (2008) Flame acceleration and DDT in channels with obstacles: effect of obstacle spacing. Combust Flame 155:302CrossRef Gamezo V, Ogawa T, Oran ES (2008) Flame acceleration and DDT in channels with obstacles: effect of obstacle spacing. Combust Flame 155:302CrossRef
Zurück zum Zitat Johansen C, Ciccarelli G (2010) Numerical simulations of the flow field ahead of an accelerating flame in an obstructed channel. Combust. Theory Modell. 14:235CrossRefMATH Johansen C, Ciccarelli G (2010) Numerical simulations of the flow field ahead of an accelerating flame in an obstructed channel. Combust. Theory Modell. 14:235CrossRefMATH
Zurück zum Zitat Ju Y, Maruta K (2011) Microscale combustion: technology development and fundamental research. Prog Energy Combust Sci 37:669CrossRef Ju Y, Maruta K (2011) Microscale combustion: technology development and fundamental research. Prog Energy Combust Sci 37:669CrossRef
Zurück zum Zitat Kagan L, Sivashinsky G (2003) The transition from deflagration to detonation in thin channels. Combust Flame 134:389CrossRef Kagan L, Sivashinsky G (2003) The transition from deflagration to detonation in thin channels. Combust Flame 134:389CrossRef
Zurück zum Zitat Kuznetsov M, Alekseev V, Matsukov I, Dorofeev S (2005) DDT in a smooth tube filled with a hydrogen-oxygen mixture. Shock Waves 14:205CrossRef Kuznetsov M, Alekseev V, Matsukov I, Dorofeev S (2005) DDT in a smooth tube filled with a hydrogen-oxygen mixture. Shock Waves 14:205CrossRef
Zurück zum Zitat Ott J, Oran ES, Anderson J (2003) A mechanism for flame acceleration in narrow tubes. AIAA J 41:1391CrossRef Ott J, Oran ES, Anderson J (2003) A mechanism for flame acceleration in narrow tubes. AIAA J 41:1391CrossRef
Zurück zum Zitat Roy G, Frolov S, Borisov A, Netzer D (2004) Pulse-detonation propulsion: challenges, current status, and future perspective. Prog Energy Combust Sci 30:545CrossRef Roy G, Frolov S, Borisov A, Netzer D (2004) Pulse-detonation propulsion: challenges, current status, and future perspective. Prog Energy Combust Sci 30:545CrossRef
Zurück zum Zitat Shelkin KI (1940) Effect of nonuniform tube walls on the initiation and spreading of detonation in gases. J Exp Theor Phys 10:823 Shelkin KI (1940) Effect of nonuniform tube walls on the initiation and spreading of detonation in gases. J Exp Theor Phys 10:823
Zurück zum Zitat Shepherd JE, Lee JHS (1992) Major research topics in combustion. Springer-Verlag, VA Shepherd JE, Lee JHS (1992) Major research topics in combustion. Springer-Verlag, VA
Zurück zum Zitat Tangirala V, Dean A, Chapin D, Pinard P, Varatharajan B (2004) Pulsed-detonation engine processes: experiments and simulations. Combust Sci Technol 176:1779CrossRef Tangirala V, Dean A, Chapin D, Pinard P, Varatharajan B (2004) Pulsed-detonation engine processes: experiments and simulations. Combust Sci Technol 176:1779CrossRef
Zurück zum Zitat Ugarte O, Demirgok B, Valiev D, Akkerman V (2015) Combustion in micro-pipes: effect of preheated walls. 9th US National Combustion Meeting, Cincinnati, OH, USA, May 17–20, 2015, Paper 3E06 Ugarte O, Demirgok B, Valiev D, Akkerman V (2015) Combustion in micro-pipes: effect of preheated walls. 9th US National Combustion Meeting, Cincinnati, OH, USA, May 17–20, 2015, Paper 3E06
Zurück zum Zitat Urtiev P, Oppenheim K (1966) Experimental observation of the transition to detonation in an explosive gas. Proc. R. Soc. London A 295:13CrossRef Urtiev P, Oppenheim K (1966) Experimental observation of the transition to detonation in an explosive gas. Proc. R. Soc. London A 295:13CrossRef
Zurück zum Zitat Valiev D, Bychkov V, Akkerman V, Eriksson LE, Marklund M (2008) Heating of the fuel mixture due to viscous stress ahead of accelerating flames in deflagration-to-detonation transition. Phys Lett A 372:4850CrossRefMATH Valiev D, Bychkov V, Akkerman V, Eriksson LE, Marklund M (2008) Heating of the fuel mixture due to viscous stress ahead of accelerating flames in deflagration-to-detonation transition. Phys Lett A 372:4850CrossRefMATH
Zurück zum Zitat Valiev D, Bychkov V, Akkerman V, Eriksson LE (2009) Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration. Phys Rev E 80:036317CrossRef Valiev D, Bychkov V, Akkerman V, Eriksson LE (2009) Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration. Phys Rev E 80:036317CrossRef
Zurück zum Zitat Valiev D, Bychkov V, Akkerman V, Law CK, Eriksson LE (2010) Flame acceleration in channels with obstacles in the deflagration-to-detonation transition. Combust Flame 157:1012CrossRef Valiev D, Bychkov V, Akkerman V, Law CK, Eriksson LE (2010) Flame acceleration in channels with obstacles in the deflagration-to-detonation transition. Combust Flame 157:1012CrossRef
Zurück zum Zitat Valiev D, Akkerman V, Kuznetsov M, Eriksson LE, Law CK, Bychkov V (2013a) Influence of gas compression on flame acceleration in the early stage of burning in tubes. Combust Flame 160:97CrossRef Valiev D, Akkerman V, Kuznetsov M, Eriksson LE, Law CK, Bychkov V (2013a) Influence of gas compression on flame acceleration in the early stage of burning in tubes. Combust Flame 160:97CrossRef
Zurück zum Zitat Valiev D, Bychkov V, Akkerman V, Eriksson LE, Law CK (2013b) Quasi-steady stages in the process of premixed flame acceleration in narrow channels. Phys Fluids 25:096101CrossRef Valiev D, Bychkov V, Akkerman V, Eriksson LE, Law CK (2013b) Quasi-steady stages in the process of premixed flame acceleration in narrow channels. Phys Fluids 25:096101CrossRef
Zurück zum Zitat Wu MH, Wang CY (2011) Reaction propagation modes in millimeter-scale tube for ethylene/oxygen mixtures. Proc Comb Inst 33:2287CrossRef Wu MH, Wang CY (2011) Reaction propagation modes in millimeter-scale tube for ethylene/oxygen mixtures. Proc Comb Inst 33:2287CrossRef
Zurück zum Zitat Wu MH, Burke M, Son S, Yetter R (2007) Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes. Proc Comb Inst 31:2429CrossRef Wu MH, Burke M, Son S, Yetter R (2007) Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes. Proc Comb Inst 31:2429CrossRef
Zurück zum Zitat Zeldovich YaB (1980) Regime classification of an exothermic reaction with nonuniform initial conditions. Combust Flame 39:211CrossRef Zeldovich YaB (1980) Regime classification of an exothermic reaction with nonuniform initial conditions. Combust Flame 39:211CrossRef
Metadaten
Titel
On the Theory and Modelling of Flame Acceleration and Deflagration-to-Detonation Transition
verfasst von
V’yacheslav (Slava) B. Akkerman
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7410-3_19

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.