Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 6/2023

03.03.2023 | Original Research Article

On the Use of Surfactant Polarity for Grain Boundary Engineering in Electrodeposited Cobalt Coatings and Its Direct Effect on the Coating Corrosion Behavior

verfasst von: G. Mohan Kumar, Chandan Srivastava

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrodeposition of cobalt coatings on mild steel was carried out by employing surfactants of different polarities (SLS (anionic), CTAB (cationic), and Triton X-100 (non-ionic). Corrosion behavior and micro-texture of the electrodeposited Co coatings were investigated and correlated. From electrochemical impedance spectroscopy (EIS) measurement, the resistance polarization (Rp) value which is a measure of corrosion resistance was determined. The highest Rp value was reported for the CTAB-containing coating followed by the SLS-containing coating and coating without surfactant The lowest Rp value was exhibited by the Triton X-100-containing coating The corrosion parameters (corrosion current density (icorr) and corrosion potential (Ecorr)) acquired from the potentiodynamic polarization analysis agreed with the trend in the Rp values. The coating with CTAB and the pristine coating showed a lower strain and higher crystallite size than the coatings with surfactants SLS and Triton X-100 which showed a higher strain and lower crystallite size. Pristine and Triton X-100-containing coatings showed strong (\(11\overline{2}0\)) texture and the coatings containing SLS and CTAB exhibited both (\(11\overline{2}0\)) and (\(0\overline{1}10\)) textures. As the textures exhibited by all the coatings were high energy, the observed distinct changes in the corrosion rate of the coatings were, therefore, correlated with the grain boundary constitution. A direct correlation was observed. The coating produced using the Triton X-100 showed the lowest corrosion resistance due to the presence of a higher fraction of high-energy high-angle grain boundaries (HAGBs). The CTAB surfactant-containing coating showed the highest corrosion resistance due to the lowest fraction of HAGBs, highest fraction of low-energy special boundaries along [\(0\overline{1}10\)] and [\(11\overline{2}0\)] axis, and highest fraction of CSL boundaries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Valero Vidal and A. Igual Muñoz: Corros. Sci., 2008, vol. 50, pp. 1954–61.CrossRef C. Valero Vidal and A. Igual Muñoz: Corros. Sci., 2008, vol. 50, pp. 1954–61.CrossRef
2.
Zurück zum Zitat Z. Ghaferi, K. Raeissi, M.A. Golozar, and H. Edris: Surf. Coat. Technol., 2011, vol. 206, pp. 497–505.CrossRef Z. Ghaferi, K. Raeissi, M.A. Golozar, and H. Edris: Surf. Coat. Technol., 2011, vol. 206, pp. 497–505.CrossRef
3.
Zurück zum Zitat X. Ni, Y. Chen, X. Jin, C. Wang, Y. Huang, Y. Hong, X. Su, G. Zhou, S. Wang, W. He, and Q. Chen: J. Taiwan Inst. Chem. Eng., 2020, vol. 112, pp. 232–39.CrossRef X. Ni, Y. Chen, X. Jin, C. Wang, Y. Huang, Y. Hong, X. Su, G. Zhou, S. Wang, W. He, and Q. Chen: J. Taiwan Inst. Chem. Eng., 2020, vol. 112, pp. 232–39.CrossRef
4.
Zurück zum Zitat Q.X. Fu, D. Sebold, F. Tietz, and H.P. Buchkremer: Solid State Ionics, 2011, vol. 192, pp. 376–82.CrossRef Q.X. Fu, D. Sebold, F. Tietz, and H.P. Buchkremer: Solid State Ionics, 2011, vol. 192, pp. 376–82.CrossRef
5.
Zurück zum Zitat D.M. Herrera-Zamora, F.I. Lizama-Tzec, I. Santos-González, R.A. Rodríguez-Carvajal, O. García-Valladares, O. Arés-Muzio, and G. Oskam: Sol. Energy, 2020, vol. 207, pp. 1132–45.CrossRef D.M. Herrera-Zamora, F.I. Lizama-Tzec, I. Santos-González, R.A. Rodríguez-Carvajal, O. García-Valladares, O. Arés-Muzio, and G. Oskam: Sol. Energy, 2020, vol. 207, pp. 1132–45.CrossRef
6.
Zurück zum Zitat V. Ezhilselvi, H. Seenivasan, P. Bera, and C. Anandan: RSC Adv., 2014, vol. 4, pp. 46293–304.CrossRef V. Ezhilselvi, H. Seenivasan, P. Bera, and C. Anandan: RSC Adv., 2014, vol. 4, pp. 46293–304.CrossRef
7.
Zurück zum Zitat S. Eskin, O. Berkh, G. Rogalsky, and J. Zahavi: Plat. Surf. Finish., 1998, vol. 85, pp. 79–83. S. Eskin, O. Berkh, G. Rogalsky, and J. Zahavi: Plat. Surf. Finish., 1998, vol. 85, pp. 79–83.
8.
Zurück zum Zitat I. Gurrappa and L. Binder: Sci. Technol. Adv. Mater., 2008, vol. 9, p. 043001 (1–11). I. Gurrappa and L. Binder: Sci. Technol. Adv. Mater., 2008, vol. 9, p. 043001 (1–11).
9.
Zurück zum Zitat Y. Hou, R. Li, and J. Liang: Appl. Surf. Sci., 2018, vol. 434, pp. 918–21.CrossRef Y. Hou, R. Li, and J. Liang: Appl. Surf. Sci., 2018, vol. 434, pp. 918–21.CrossRef
10.
Zurück zum Zitat K.M. Hyie, N.A. Resali, W.N.R. Abdullah, and W.T. Chong: Procedia Eng., 2012, vol. 41, pp. 1627–33.CrossRef K.M. Hyie, N.A. Resali, W.N.R. Abdullah, and W.T. Chong: Procedia Eng., 2012, vol. 41, pp. 1627–33.CrossRef
11.
Zurück zum Zitat F. Su, C. Liu, Q. Zuo, P. Huang, and M. Miao: Mater. Chem. Phys., 2013, vol. 139, pp. 663–73.CrossRef F. Su, C. Liu, Q. Zuo, P. Huang, and M. Miao: Mater. Chem. Phys., 2013, vol. 139, pp. 663–73.CrossRef
12.
Zurück zum Zitat R. Aslam, M. Mobin, J. Aslam, A. Aslam, S. Zehra, and S. Masroor: Adv. Colloid Interface Sci., 2021, vol. 295, 102481.CrossRef R. Aslam, M. Mobin, J. Aslam, A. Aslam, S. Zehra, and S. Masroor: Adv. Colloid Interface Sci., 2021, vol. 295, 102481.CrossRef
14.
Zurück zum Zitat A. Shirani, M. Momenzadeh, and S. Sanjabi: Surf. Coat. Technol., 2012, vol. 206, pp. 2870–76.CrossRef A. Shirani, M. Momenzadeh, and S. Sanjabi: Surf. Coat. Technol., 2012, vol. 206, pp. 2870–76.CrossRef
15.
16.
Zurück zum Zitat S. Mahdavi and S.R. Allahkaram: Trans. Nonferrous Met. Soc. China, 2018, vol. 28, pp. 2017–27.CrossRef S. Mahdavi and S.R. Allahkaram: Trans. Nonferrous Met. Soc. China, 2018, vol. 28, pp. 2017–27.CrossRef
17.
Zurück zum Zitat R. Nikosokhan, R. Norouzbeigi, and E. Velayi: Ceram. Int., 2021, vol. 47, pp. 30711–21.CrossRef R. Nikosokhan, R. Norouzbeigi, and E. Velayi: Ceram. Int., 2021, vol. 47, pp. 30711–21.CrossRef
18.
Zurück zum Zitat D.P. Weston, Y.Q. Zhu, D. Zhang, C. Miller, D.G. Kingerley, C. Carpenter, S.J. Harris, and N.J. Weston: Electrochim. Acta, 2011, vol. 56, pp. 6837–46.CrossRef D.P. Weston, Y.Q. Zhu, D. Zhang, C. Miller, D.G. Kingerley, C. Carpenter, S.J. Harris, and N.J. Weston: Electrochim. Acta, 2011, vol. 56, pp. 6837–46.CrossRef
19.
Zurück zum Zitat K. Raeissi, M.A. Golozar, A. Saatchi, and J.A. Szpunar: Trans. IMF, 2005, vol. 83, pp. 99–103.CrossRef K. Raeissi, M.A. Golozar, A. Saatchi, and J.A. Szpunar: Trans. IMF, 2005, vol. 83, pp. 99–103.CrossRef
20.
21.
Zurück zum Zitat K. Sai Jyotheender, M.K. Punith Kumar, and C. Srivastava: Appl. Surf. Sci., 2021, vol. 559, p. 149953.CrossRef K. Sai Jyotheender, M.K. Punith Kumar, and C. Srivastava: Appl. Surf. Sci., 2021, vol. 559, p. 149953.CrossRef
22.
Zurück zum Zitat K. Sai Jyotheender, M.K. Punith Kumar, and C. Srivastava: Surf. Coatings Technol., 2021, vol. 423, p. 127594.CrossRef K. Sai Jyotheender, M.K. Punith Kumar, and C. Srivastava: Surf. Coatings Technol., 2021, vol. 423, p. 127594.CrossRef
23.
Zurück zum Zitat R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, and A.C. Bose: Solid State Commun., 2009, vol. 149, pp. 1919–23.CrossRef R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, and A.C. Bose: Solid State Commun., 2009, vol. 149, pp. 1919–23.CrossRef
24.
Zurück zum Zitat A. Khorsand Zak, W.H. Abd. Majid, M.E. Abrishami, and R. Yousefi: Solid State Sci., 2011, vol. 13, pp. 251–56.CrossRef A. Khorsand Zak, W.H. Abd. Majid, M.E. Abrishami, and R. Yousefi: Solid State Sci., 2011, vol. 13, pp. 251–56.CrossRef
25.
Zurück zum Zitat C.M.P. Kumar, T.V. Venkatesha, and R. Shabadi: Mater. Res. Bull., 2013, vol. 48, pp. 1477–83.CrossRef C.M.P. Kumar, T.V. Venkatesha, and R. Shabadi: Mater. Res. Bull., 2013, vol. 48, pp. 1477–83.CrossRef
26.
Zurück zum Zitat D. Li, F. Chen, Z.H. Xie, S. Shan, and C.J. Zhong: J. Alloys Compd., 2017, vol. 705, pp. 70–78.CrossRef D. Li, F. Chen, Z.H. Xie, S. Shan, and C.J. Zhong: J. Alloys Compd., 2017, vol. 705, pp. 70–78.CrossRef
27.
Zurück zum Zitat P. Wang, D. Zhang, R. Qiu, Y. Wan, and J. Wu: Corros. Sci., 2014, vol. 80, pp. 366–73.CrossRef P. Wang, D. Zhang, R. Qiu, Y. Wan, and J. Wu: Corros. Sci., 2014, vol. 80, pp. 366–73.CrossRef
28.
Zurück zum Zitat T. Ma, B. Tan, L. Guo, W. Wang, W. Li, J. Ji, M. Yan, and S. Kaya: J. Mol. Liq., 2021, vol. 341, 116907.CrossRef T. Ma, B. Tan, L. Guo, W. Wang, W. Li, J. Ji, M. Yan, and S. Kaya: J. Mol. Liq., 2021, vol. 341, 116907.CrossRef
29.
Zurück zum Zitat N. Allain-Bonasso, F. Wagner, S. Berbenni, and D.P. Field: Mater. Sci. Eng. A, 2012, vol. 548, pp. 56–63.CrossRef N. Allain-Bonasso, F. Wagner, S. Berbenni, and D.P. Field: Mater. Sci. Eng. A, 2012, vol. 548, pp. 56–63.CrossRef
30.
Zurück zum Zitat V. Klosek: EPJ Web Conf., 2017, vol. 155, p. 00005 (1–24). V. Klosek: EPJ Web Conf., 2017, vol. 155, p. 00005 (1–24).
31.
Zurück zum Zitat J. Wang and I.J. Beyerlein: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3556–69.CrossRef J. Wang and I.J. Beyerlein: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3556–69.CrossRef
32.
Zurück zum Zitat J. Wang and I.J. Beyerlein: Model. Simul. Mater. Sci. Eng., 2012, vol. 20, 024002.CrossRef J. Wang and I.J. Beyerlein: Model. Simul. Mater. Sci. Eng., 2012, vol. 20, 024002.CrossRef
33.
Zurück zum Zitat K.S. Jyotheender and C. Srivastava: Materialia, 2022, vol. 22, 101431.CrossRef K.S. Jyotheender and C. Srivastava: Materialia, 2022, vol. 22, 101431.CrossRef
34.
Zurück zum Zitat C. Guo, Y. Zuo, X. Zhao, J. Zhao, and J. Xiong: Surf. Coat. Technol., 2008, vol. 202, pp. 3385–90.CrossRef C. Guo, Y. Zuo, X. Zhao, J. Zhao, and J. Xiong: Surf. Coat. Technol., 2008, vol. 202, pp. 3385–90.CrossRef
35.
Metadaten
Titel
On the Use of Surfactant Polarity for Grain Boundary Engineering in Electrodeposited Cobalt Coatings and Its Direct Effect on the Coating Corrosion Behavior
verfasst von
G. Mohan Kumar
Chandan Srivastava
Publikationsdatum
03.03.2023
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 6/2023
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-023-07011-1

Weitere Artikel der Ausgabe 6/2023

Metallurgical and Materials Transactions A 6/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.