Skip to main content
Erschienen in: Archive of Applied Mechanics 10/2017

10.07.2017 | Original

On the use of two-dimensional Euler parameters for the dynamic simulation of planar rigid multibody systems

verfasst von: Carmine M. Pappalardo, Domenico Guida

Erschienen in: Archive of Applied Mechanics | Ausgabe 10/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper introduces a new coordinate formulation for the kinematic and dynamic analysis of planar multibody systems composed of rigid bodies. The methodology presented in this work is called planar reference point coordinate formulation (RPCF) with Euler parameters. In the planar RPCF with Euler parameters, the rotational coordinates used for describing the body orientation are the redundant components of a two-dimensional unit quaternion that identify a planar set of Euler parameters. It is shown in the paper that the planar RPCF with Euler parameters allows for obtaining consistent kinematic and dynamic descriptions of two-dimensional rigid bodies. In the numerical solution of the equations of motion, the well-known generalized coordinate partitioning method can be effectively utilized to stabilize the violation of the algebraic constraints at the position and velocity levels leading to physically correct and numerically stable dynamic simulations. Furthermore, a standard numerical integration procedure can be employed for calculating an approximate solution of the equations of motion resulting from the planar RPCF with Euler parameters. In the paper, the computer implementation of the proposed formulation approach is demonstrated considering four rigid multibody systems which serve as simple benchmark problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Terze, Z., Naudet, J.: Geometric properties of projective constraint violation stabilization method for generally constrained multibody systems on manifolds. Multibody Syst. Dyn. 20(1), 85–106 (2008)MATHCrossRef Terze, Z., Naudet, J.: Geometric properties of projective constraint violation stabilization method for generally constrained multibody systems on manifolds. Multibody Syst. Dyn. 20(1), 85–106 (2008)MATHCrossRef
2.
Zurück zum Zitat Uchida, T., Vyasarayani, C.P., Smart, M., McPhee, J.: Parameter identification for multibody systems expressed in differential-algebraic form. Multibody Syst. Dyn. 31(4), 393–403 (2014)MathSciNetMATHCrossRef Uchida, T., Vyasarayani, C.P., Smart, M., McPhee, J.: Parameter identification for multibody systems expressed in differential-algebraic form. Multibody Syst. Dyn. 31(4), 393–403 (2014)MathSciNetMATHCrossRef
3.
Zurück zum Zitat Guo, W., Wang, T.: A methodology for simulations of multi-rigid body systems with topology changes. Multibody Syst. Dyn. 35(1), 25–38 (2015)MathSciNetMATHCrossRef Guo, W., Wang, T.: A methodology for simulations of multi-rigid body systems with topology changes. Multibody Syst. Dyn. 35(1), 25–38 (2015)MathSciNetMATHCrossRef
4.
Zurück zum Zitat Carpinelli, M., Gubitosa, M., Mundo, D., Desmet, W.: Automated independent coordinates switching for the solution of stiff DAEs with the linearly implicit Euler method. Multibody Syst. Dyn. 36(1), 67–85 (2016)MathSciNetMATHCrossRef Carpinelli, M., Gubitosa, M., Mundo, D., Desmet, W.: Automated independent coordinates switching for the solution of stiff DAEs with the linearly implicit Euler method. Multibody Syst. Dyn. 36(1), 67–85 (2016)MathSciNetMATHCrossRef
5.
Zurück zum Zitat Carpinelli, M., Mundo, D., Tamarozzi, T., Gubitosa, M., Donders, S., Desmet, W.: Integrating vehicle body concept modelling and flexible multi-body techniques for ride and handling simulations. In: ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, pp. 113–122 (2012) Carpinelli, M., Mundo, D., Tamarozzi, T., Gubitosa, M., Donders, S., Desmet, W.: Integrating vehicle body concept modelling and flexible multi-body techniques for ride and handling simulations. In: ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, pp. 113–122 (2012)
6.
Zurück zum Zitat Palermo, A., Mundo, D., Hadjit, R., Desmet, W.: Multibody element for spur and helical gear meshing based on detailed three-dimensional contact calculations. Mech. Mach. Theory 62, 13–30 (2013)CrossRef Palermo, A., Mundo, D., Hadjit, R., Desmet, W.: Multibody element for spur and helical gear meshing based on detailed three-dimensional contact calculations. Mech. Mach. Theory 62, 13–30 (2013)CrossRef
7.
Zurück zum Zitat Palermo, A., Mundo, D., Hadjit, R., Mas, P., Desmet, W.: Multibody modelling of shuttling excitation in spur and helical geared transmissions. Proc. ISMA 2012, 4005–4016 (2012) Palermo, A., Mundo, D., Hadjit, R., Mas, P., Desmet, W.: Multibody modelling of shuttling excitation in spur and helical geared transmissions. Proc. ISMA 2012, 4005–4016 (2012)
8.
Zurück zum Zitat Zhang, J., Liu, D., Liu, Y.: A constraint violation suppressing formulation for spatial multibody dynamics with singular mass matrix. Multibody Syst. Dyn. 36(1), 87–110 (2016)MathSciNetMATHCrossRef Zhang, J., Liu, D., Liu, Y.: A constraint violation suppressing formulation for spatial multibody dynamics with singular mass matrix. Multibody Syst. Dyn. 36(1), 87–110 (2016)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Gonzalez, F., Dopico, D., Pastorino, R., Cuadrado, J.: Behaviour of augmented Lagrangian and Hamiltonian methods for multibody dynamics in the proximity of singular configurations. Nonlinear Dyn. 85(3), 1491–1508 (2016)MathSciNetCrossRef Gonzalez, F., Dopico, D., Pastorino, R., Cuadrado, J.: Behaviour of augmented Lagrangian and Hamiltonian methods for multibody dynamics in the proximity of singular configurations. Nonlinear Dyn. 85(3), 1491–1508 (2016)MathSciNetCrossRef
10.
Zurück zum Zitat Marques, F., Souto, A.P., Flores, P.: On the constraints violation in forward dynamics of multibody systems. Multibody Syst. Dyn. 39(4), 385–419 (2016)MathSciNetMATHCrossRef Marques, F., Souto, A.P., Flores, P.: On the constraints violation in forward dynamics of multibody systems. Multibody Syst. Dyn. 39(4), 385–419 (2016)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Cammarata, A., Calio, I., D’Urso, D., Greco, A., Lacagnina, M., Fichera, G.: Dynamic stiffness model of spherical parallel robots. J. Sound Vib. 384, 312–324 (2016)CrossRef Cammarata, A., Calio, I., D’Urso, D., Greco, A., Lacagnina, M., Fichera, G.: Dynamic stiffness model of spherical parallel robots. J. Sound Vib. 384, 312–324 (2016)CrossRef
12.
Zurück zum Zitat Cammarata, A.: Unified formulation for the stiffness analysis of spatial mechanisms. Mech. Mach. Theory 105, 272–284 (2016)CrossRef Cammarata, A.: Unified formulation for the stiffness analysis of spatial mechanisms. Mech. Mach. Theory 105, 272–284 (2016)CrossRef
13.
Zurück zum Zitat Cammarata, A., Angeles, J., Sinatra, R.: The dynamics of parallel schonflies motion generators: the case of a two-limb system. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 223(1), 29–52 (2009)CrossRef Cammarata, A., Angeles, J., Sinatra, R.: The dynamics of parallel schonflies motion generators: the case of a two-limb system. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 223(1), 29–52 (2009)CrossRef
14.
Zurück zum Zitat Hu, W., Tian, Q., Hu, H.Y.: Dynamics simulation of the liquid-filled flexible multibody system via the absolute nodal coordinate formulation and SPH method. Nonlinear Dyn. 75(4), 653–671 (2014)MathSciNetCrossRef Hu, W., Tian, Q., Hu, H.Y.: Dynamics simulation of the liquid-filled flexible multibody system via the absolute nodal coordinate formulation and SPH method. Nonlinear Dyn. 75(4), 653–671 (2014)MathSciNetCrossRef
15.
Zurück zum Zitat Liu, C., Tian, Q., Hu, H.Y.: Dynamics of large scale rigid-flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26(3), 283–305 (2011)MATHCrossRef Liu, C., Tian, Q., Hu, H.Y.: Dynamics of large scale rigid-flexible multibody system composed of composite laminated plates. Multibody Syst. Dyn. 26(3), 283–305 (2011)MATHCrossRef
16.
Zurück zum Zitat Patel, M.D., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 230(1), 1–16 (2016) Patel, M.D., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 230(1), 1–16 (2016)
17.
Zurück zum Zitat Shi, H., Wang, L., Nicolsen, B., Shabana, A.A.: Integration of geometry and analysis for the study of liquid sloshing in railroad vehicle dynamics. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. (2017). doi:10.1177/1464419317696418 Shi, H., Wang, L., Nicolsen, B., Shabana, A.A.: Integration of geometry and analysis for the study of liquid sloshing in railroad vehicle dynamics. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. (2017). doi:10.​1177/​1464419317696418​
18.
Zurück zum Zitat Kulkarni, S., Pappalardo, C.M., Shabana, A.A.: Pantograph/catenary contact formulations. J. Vib. Acoust. 139(1), 1–12 (2017) Kulkarni, S., Pappalardo, C.M., Shabana, A.A.: Pantograph/catenary contact formulations. J. Vib. Acoust. 139(1), 1–12 (2017)
19.
Zurück zum Zitat Lan, P., Sahana, A.A.: Rational finite elements and flexible body dynamics. J. Vib. Acoust. 132(4), 1–9 (2010)CrossRef Lan, P., Sahana, A.A.: Rational finite elements and flexible body dynamics. J. Vib. Acoust. 132(4), 1–9 (2010)CrossRef
20.
Zurück zum Zitat Pappalardo, C.M., Yu, Z., Zhang, X., Shabana, A.A.: Rational ANCF thin plate finite element. J. Comput. Nonlinear Dyn. 11(5), 1–15 (2016) Pappalardo, C.M., Yu, Z., Zhang, X., Shabana, A.A.: Rational ANCF thin plate finite element. J. Comput. Nonlinear Dyn. 11(5), 1–15 (2016)
21.
Zurück zum Zitat Liu, C., Tian, Q., Hu, H., Garcia-Vallejo, D.: Simple formulations of imposing moments and evaluating joint reaction forces for rigid-flexible multibody systems. Nonlinear Dyn. 69(1), 127–147 (2012)MathSciNetMATHCrossRef Liu, C., Tian, Q., Hu, H., Garcia-Vallejo, D.: Simple formulations of imposing moments and evaluating joint reaction forces for rigid-flexible multibody systems. Nonlinear Dyn. 69(1), 127–147 (2012)MathSciNetMATHCrossRef
22.
Zurück zum Zitat Pappalardo, C.M., Patel, M.D., Tinsley, B., Shabana, A.A.: Contact force control in multibody pantograph/catenary systems. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 230(4), 307–328 (2016) Pappalardo, C.M., Patel, M.D., Tinsley, B., Shabana, A.A.: Contact force control in multibody pantograph/catenary systems. Proc. Inst. Mech. Eng. Part K J. Multibody Dyn. 230(4), 307–328 (2016)
23.
Zurück zum Zitat Guida, D., Pappalardo, C.M.: Forward and inverse dynamics of nonholonomic mechanical systems. Meccanica 49(7), 1547–1559 (2014) Guida, D., Pappalardo, C.M.: Forward and inverse dynamics of nonholonomic mechanical systems. Meccanica 49(7), 1547–1559 (2014)
24.
Zurück zum Zitat Tian, Q., Chen, L.P., Zhang, Y.Q., Yang, J.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4(2), 1–14 (2009)CrossRef Tian, Q., Chen, L.P., Zhang, Y.Q., Yang, J.: An efficient hybrid method for multibody dynamics simulation based on absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 4(2), 1–14 (2009)CrossRef
25.
Zurück zum Zitat Pappalardo, C.M., Wallin, M., Shabana, A.A.: A new ANCF/CRBF fully parametrized plate finite element. J. Comput. Nonlinear Dyn. 12(3), 1–13 (2017) Pappalardo, C.M., Wallin, M., Shabana, A.A.: A new ANCF/CRBF fully parametrized plate finite element. J. Comput. Nonlinear Dyn. 12(3), 1–13 (2017)
26.
Zurück zum Zitat Udwadia, F.E., Wanichanon, T.: On general nonlinear constrained mechanical systems. J. Numer. Algebra Control Optim. 3(3), 425–443 (2013)MathSciNetMATHCrossRef Udwadia, F.E., Wanichanon, T.: On general nonlinear constrained mechanical systems. J. Numer. Algebra Control Optim. 3(3), 425–443 (2013)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Schutte, A.D., Udwadia, F.E.: New approach to the modeling of complex multibody dynamical systems. J. Appl. Mech. 78(2), 1–11 (2010) Schutte, A.D., Udwadia, F.E.: New approach to the modeling of complex multibody dynamical systems. J. Appl. Mech. 78(2), 1–11 (2010)
28.
Zurück zum Zitat Callejo, A., Pan, Y., Ricon, J.L., Kovecses, J., De Jalon, J.G.: Comparison of semirecursive and subsystem synthesis algorithms for the efficient simulation of multibody systems. J. Comput. Nonlinear Dyn. 12(1), 1–13 (2017) Callejo, A., Pan, Y., Ricon, J.L., Kovecses, J., De Jalon, J.G.: Comparison of semirecursive and subsystem synthesis algorithms for the efficient simulation of multibody systems. J. Comput. Nonlinear Dyn. 12(1), 1–13 (2017)
29.
Zurück zum Zitat Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. Lond. Ser. A 462, 2097–2117 (2006)MathSciNetMATHCrossRef Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. Lond. Ser. A 462, 2097–2117 (2006)MathSciNetMATHCrossRef
31.
Zurück zum Zitat Garcia de Jalon, J., Unda, J., Avello, A.: Natural coordinates for the computer analysis of multibody systems. J. Comput. Methods Appl. Mech. Eng. 56(3), 309–327 (1986)MATHCrossRef Garcia de Jalon, J., Unda, J., Avello, A.: Natural coordinates for the computer analysis of multibody systems. J. Comput. Methods Appl. Mech. Eng. 56(3), 309–327 (1986)MATHCrossRef
32.
Zurück zum Zitat Garcia de Jalon, J., Unda, J., Avello, A., Jimenez, J.M.: Dynamic analysis of three-dimensional mechanisms in natural coordinates. J. Mech. Des. 109(4), 460–465 (1987)MATH Garcia de Jalon, J., Unda, J., Avello, A., Jimenez, J.M.: Dynamic analysis of three-dimensional mechanisms in natural coordinates. J. Mech. Des. 109(4), 460–465 (1987)MATH
33.
Zurück zum Zitat Garcia de Jalon, J.: Dynamic analysis of three-dimensional mechanisms in natural coordinates. J. Multibody Syst. Dyn. 18(1), 15–33 (2007)MathSciNetMATHCrossRef Garcia de Jalon, J.: Dynamic analysis of three-dimensional mechanisms in natural coordinates. J. Multibody Syst. Dyn. 18(1), 15–33 (2007)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Pappalardo, C.M.: Modelling rigid multibody systems using natural absolute coordinates. J. Mech. Eng. Ind. Des. 3(1), 24–38 (2014)MathSciNet Pappalardo, C.M.: Modelling rigid multibody systems using natural absolute coordinates. J. Mech. Eng. Ind. Des. 3(1), 24–38 (2014)MathSciNet
35.
Zurück zum Zitat Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)MathSciNetMATHCrossRef Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)MathSciNetMATHCrossRef
36.
Zurück zum Zitat Sanborn, G.G., Shabana, A.A.: On the integration of computer aided design and analysis using the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 22(2), 181–197 (2009)MATHCrossRef Sanborn, G.G., Shabana, A.A.: On the integration of computer aided design and analysis using the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 22(2), 181–197 (2009)MATHCrossRef
37.
Zurück zum Zitat Lan, P., Liu, M.: Integration of computer aided design and analysis using the absolute nodal coordinate formulation. In: IEEE International Conference on Intelligent Computation Technology and Automation (ICICTA 2011), pp. 159–162 (2011) Lan, P., Liu, M.: Integration of computer aided design and analysis using the absolute nodal coordinate formulation. In: IEEE International Conference on Intelligent Computation Technology and Automation (ICICTA 2011), pp. 159–162 (2011)
38.
Zurück zum Zitat Orzechowski, G., Shabana, A.A.: Analysis of warping deformation modes using higher order ANCF beam element. J. Sound Vib. 363, 428–445 (2016)CrossRef Orzechowski, G., Shabana, A.A.: Analysis of warping deformation modes using higher order ANCF beam element. J. Sound Vib. 363, 428–445 (2016)CrossRef
39.
Zurück zum Zitat Pappalardo, C.M., Wang, T., Shabana, A.A.: On the formulation of the planar ANCF triangular finite elements. Nonlinear Dyn. 89(2), 1019–1045 (2017) Pappalardo, C.M., Wang, T., Shabana, A.A.: On the formulation of the planar ANCF triangular finite elements. Nonlinear Dyn. 89(2), 1019–1045 (2017)
40.
Zurück zum Zitat Sherif, K., Nachbagauer, K., Steiner, W.: On the rotational equations of motion in rigid body dynamics when using Euler parameters. J. Nonlinear Dyan. 81, 343–352 (2015)MathSciNetMATHCrossRef Sherif, K., Nachbagauer, K., Steiner, W.: On the rotational equations of motion in rigid body dynamics when using Euler parameters. J. Nonlinear Dyan. 81, 343–352 (2015)MathSciNetMATHCrossRef
41.
Zurück zum Zitat Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104(1), 247–255 (1982)CrossRef Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104(1), 247–255 (1982)CrossRef
42.
Zurück zum Zitat Wehage, K.T., Wehage, R.A., Ravani, B.: Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mech. Mach. Theory 92, 464–483 (2015)CrossRef Wehage, K.T., Wehage, R.A., Ravani, B.: Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mech. Mach. Theory 92, 464–483 (2015)CrossRef
43.
Zurück zum Zitat Mariti, L., Belfiore, N.P., Pennestri, E., Valentini, P.P.: Comparison of solution strategies for multibody dynamics equations. Int. J. Numer. Methods Eng. 88(7), 637–656 (2011)MathSciNetMATHCrossRef Mariti, L., Belfiore, N.P., Pennestri, E., Valentini, P.P.: Comparison of solution strategies for multibody dynamics equations. Int. J. Numer. Methods Eng. 88(7), 637–656 (2011)MathSciNetMATHCrossRef
44.
Zurück zum Zitat Flores, P., Machado, M., Seabra, E., da Silva, M.T.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6(1), 1–9 (2011)CrossRef Flores, P., Machado, M., Seabra, E., da Silva, M.T.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6(1), 1–9 (2011)CrossRef
45.
Zurück zum Zitat Guida, D., Nilvetti, F., Pappalardo, C.M.: Instability induced by dry friction. Int. J. Mech. 3(3), 44–51 (2009) Guida, D., Nilvetti, F., Pappalardo, C.M.: Instability induced by dry friction. Int. J. Mech. 3(3), 44–51 (2009)
46.
Zurück zum Zitat Guida, D., Nilvetti, F., Pappalardo, C.M.: Dry friction influence on cart pendulum dynamics. Int. J. Mech. 3(2), 31–38 (2009) Guida, D., Nilvetti, F., Pappalardo, C.M.: Dry friction influence on cart pendulum dynamics. Int. J. Mech. 3(2), 31–38 (2009)
47.
Zurück zum Zitat Ruggiero, A., De Simone, M.C., Russo, D., Guida, D.: Sound pressure measurement of orchestral instruments in the concert hall of a public school. Int. J. Circuits Syst. Signal Process. 10, 75–812 (2016) Ruggiero, A., De Simone, M.C., Russo, D., Guida, D.: Sound pressure measurement of orchestral instruments in the concert hall of a public school. Int. J. Circuits Syst. Signal Process. 10, 75–812 (2016)
48.
Zurück zum Zitat De Simone, M. C., Guida, D.: Dry friction influence on structure dynamics. In: COMPDYN 2015—5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, pp. 4483–4491 (2015) De Simone, M. C., Guida, D.: Dry friction influence on structure dynamics. In: COMPDYN 2015—5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, pp. 4483–4491 (2015)
49.
Zurück zum Zitat Guida, D., Nilvetti, F., Pappalardo, C.M.: Parameter identification of a two degrees of freedom mechanical system. Int. J. Mech. 3(2), 23–30 (2009) Guida, D., Nilvetti, F., Pappalardo, C.M.: Parameter identification of a two degrees of freedom mechanical system. Int. J. Mech. 3(2), 23–30 (2009)
50.
Zurück zum Zitat Guida, D., Pappalardo, C.M.: Sommerfeld and mass parameter identification of lubricated journal bearing. WSEAS Trans. Appl. Theor. Mech. 4(4), 205–214 (2009) Guida, D., Pappalardo, C.M.: Sommerfeld and mass parameter identification of lubricated journal bearing. WSEAS Trans. Appl. Theor. Mech. 4(4), 205–214 (2009)
51.
Zurück zum Zitat Pappalardo, C.M., Guida, D.: Adjoint-based optimization procedure for active vibration control of nonlinear mechanical systems. ASME J. Dyn. Syst. Meas. Control 139(8), 081010 (2017) Pappalardo, C.M., Guida, D.: Adjoint-based optimization procedure for active vibration control of nonlinear mechanical systems. ASME J. Dyn. Syst. Meas. Control 139(8), 081010 (2017)
53.
Zurück zum Zitat Guida, D., Pappalardo, C.M.: Control design of an active suspension system for a quarter-car model with hysteresis. J. Vib. Eng. Technol. 3(3), 277–299 (2015) Guida, D., Pappalardo, C.M.: Control design of an active suspension system for a quarter-car model with hysteresis. J. Vib. Eng. Technol. 3(3), 277–299 (2015)
54.
Zurück zum Zitat Guida, D., Pappalardo, C.M.: A new control algorithm for active suspension systems featuring hysteresis. FME Trans. 41(4), 285–290 (2013) Guida, D., Pappalardo, C.M.: A new control algorithm for active suspension systems featuring hysteresis. FME Trans. 41(4), 285–290 (2013)
55.
Zurück zum Zitat Udwadia, F.E., Schutte, A.D.: An alternative derivation of the quaternion equations of motion for rigid-body rotational dynamics. J. Appl. Mech. 77(4), 1–4 (2010)CrossRef Udwadia, F.E., Schutte, A.D.: An alternative derivation of the quaternion equations of motion for rigid-body rotational dynamics. J. Appl. Mech. 77(4), 1–4 (2010)CrossRef
56.
Zurück zum Zitat Udwadia, F.E., Schutte, A.D.: A unified approach to rigid body rotational dynamics and control. Proc. R. Soc. A 468(2138), 395–414 (2012)MathSciNetMATHCrossRef Udwadia, F.E., Schutte, A.D.: A unified approach to rigid body rotational dynamics and control. Proc. R. Soc. A 468(2138), 395–414 (2012)MathSciNetMATHCrossRef
57.
Zurück zum Zitat Antunes, J., Debut, V.: Dynamical computation of constrained flexible systems using a modal Udwadia–Kalaba formulation: application to musical instruments. J. Acoust. Soc. Am. 141(2), 764–778 (2017)CrossRef Antunes, J., Debut, V.: Dynamical computation of constrained flexible systems using a modal Udwadia–Kalaba formulation: application to musical instruments. J. Acoust. Soc. Am. 141(2), 764–778 (2017)CrossRef
58.
Zurück zum Zitat Koganti, P.B., Udwadia, F.E.: Unified approach to modeling and control of rigid multibody systems. J. Guid. Control Dyn. 39(12), 2683–2698 (2016)CrossRef Koganti, P.B., Udwadia, F.E.: Unified approach to modeling and control of rigid multibody systems. J. Guid. Control Dyn. 39(12), 2683–2698 (2016)CrossRef
59.
Zurück zum Zitat Udwadia, F.E., Mylapilli, H.: Constrained motion of mechanical systems and tracking control of nonlinear systems: connections and closed-form results. J. Nonlinear Dyn. Syst. Theory 15(1), 73–89 (2015)MathSciNetMATH Udwadia, F.E., Mylapilli, H.: Constrained motion of mechanical systems and tracking control of nonlinear systems: connections and closed-form results. J. Nonlinear Dyn. Syst. Theory 15(1), 73–89 (2015)MathSciNetMATH
60.
Zurück zum Zitat Sun, H., Zhao, H., Zhen, S., Huang, K., Zhao, F., Chen, X., Chen, Y.H.: Application of the Udwadia–Kalaba approach to tracking control of mobile robots. Nonlinear Dyn. 83(1–2), 389–400 (2016)MathSciNetCrossRef Sun, H., Zhao, H., Zhen, S., Huang, K., Zhao, F., Chen, X., Chen, Y.H.: Application of the Udwadia–Kalaba approach to tracking control of mobile robots. Nonlinear Dyn. 83(1–2), 389–400 (2016)MathSciNetCrossRef
Metadaten
Titel
On the use of two-dimensional Euler parameters for the dynamic simulation of planar rigid multibody systems
verfasst von
Carmine M. Pappalardo
Domenico Guida
Publikationsdatum
10.07.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 10/2017
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-017-1279-0

Weitere Artikel der Ausgabe 10/2017

Archive of Applied Mechanics 10/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.