Skip to main content
Erschienen in: Engineering with Computers 6/2022

07.04.2022 | Original Article

On the virtual element method for topology optimization of non-Newtonian fluid-flow problems

verfasst von: Miguel A. A. Suárez, Juan S. Romero, Anderson Pereira, Ivan F. M. Menezes

Erschienen in: Engineering with Computers | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents some virtual element method (VEM) applications for topology optimization of non-Newtonian fluid-flow problems in arbitrary two-dimensional domains. The objective is to design an optimal layout for the incompressible non-Newtonian fluid flow, governed by the Navier–Stokes–Brinkman equations, to minimize the viscous drag. The porosity approach is used in the topology optimization formulation. The VEM is used to solve the governing boundary value problem. The key feature distinguishing the VEM from the classical finite element method is that the local basis functions in the VEM are only implicitly known. Instead, the VEM uses local projection operators to describe each element’s rigid body motion and constant strain components. Therefore, the VEM can handle meshes with arbitrarily shaped elements. Several numerical examples are provided to demonstrate the efficacy and efficiency of the VEM for the topology optimization of fluid-flow problems. A MATLAB code for reproducing the results provided in this paper is freely available at https://​github.​com/​mampueros/​VEM_​TopOpt_​FluidFlow.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For detailed discussions on the VEM formulation, the readers are referred to the following References: [23, 42, 4951].
 
Literatur
1.
Zurück zum Zitat Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. J Numer Methods 41:77–107MathSciNetMATH Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. J Numer Methods 41:77–107MathSciNetMATH
2.
Zurück zum Zitat Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30:181–192MathSciNetMATH Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30:181–192MathSciNetMATH
3.
Zurück zum Zitat Guest JK, Prévost JH (2006) Topology optimization of creeping fluid flows using a Darcy-Stokes finite element. Int J Numer Meth Eng 66:461–484MathSciNetMATH Guest JK, Prévost JH (2006) Topology optimization of creeping fluid flows using a Darcy-Stokes finite element. Int J Numer Meth Eng 66:461–484MathSciNetMATH
4.
Zurück zum Zitat Wiker N, Klarbring A, Borrvall T (2007) Topology optimization of regions of Darcy and Stokes flow. Int J Numer Meth Eng 69:1374–1404MathSciNetMATH Wiker N, Klarbring A, Borrvall T (2007) Topology optimization of regions of Darcy and Stokes flow. Int J Numer Meth Eng 69:1374–1404MathSciNetMATH
5.
Zurück zum Zitat Pereira A, Talischi C, Paulino MIFMGH, Carvalho MS (2016) Fluid flow topology optimization in PolyTop: stability and computational implementation. Struct Multidiscip Optim 54:1345–1364MathSciNet Pereira A, Talischi C, Paulino MIFMGH, Carvalho MS (2016) Fluid flow topology optimization in PolyTop: stability and computational implementation. Struct Multidiscip Optim 54:1345–1364MathSciNet
6.
Zurück zum Zitat Challis VJ, Guest JK (2009) Level set topology optimization of fluids in Stokes flow. Int J Numer Meth Eng 79:1284–1308MathSciNetMATH Challis VJ, Guest JK (2009) Level set topology optimization of fluids in Stokes flow. Int J Numer Meth Eng 79:1284–1308MathSciNetMATH
7.
Zurück zum Zitat Okkels F, Olesen LH, Bruus H (2005) Applications of topology optimization in the design of micro-and nanofluidic systems. Numer Algor 1:575–578 Okkels F, Olesen LH, Bruus H (2005) Applications of topology optimization in the design of micro-and nanofluidic systems. Numer Algor 1:575–578
8.
Zurück zum Zitat Olesen LH, Okkels F, Bruus H (2005) A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow. Int J Numer Meth Eng 65(1):975–1001MathSciNetMATH Olesen LH, Okkels F, Bruus H (2005) A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow. Int J Numer Meth Eng 65(1):975–1001MathSciNetMATH
9.
Zurück zum Zitat Deng Y, Liu Z, Wu Y (2011) Topology optimization of unsteady incompressible Navier - Stokes flow. J Comput Phys 230:6688–6708MathSciNetMATH Deng Y, Liu Z, Wu Y (2011) Topology optimization of unsteady incompressible Navier - Stokes flow. J Comput Phys 230:6688–6708MathSciNetMATH
10.
Zurück zum Zitat Kreissl S, Pingen G, Maute K (2011) An explicit level set approach for generalized shape optimization of fluids with the lattice Boltzmann method. Int J Numer Meth Fluids 65:496–519MATH Kreissl S, Pingen G, Maute K (2011) An explicit level set approach for generalized shape optimization of fluids with the lattice Boltzmann method. Int J Numer Meth Fluids 65:496–519MATH
11.
Zurück zum Zitat Kreissl S, Pingen G, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Meth Eng 87:1229–1253MathSciNetMATH Kreissl S, Pingen G, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Meth Eng 87:1229–1253MathSciNetMATH
12.
Zurück zum Zitat Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46:311–326MathSciNetMATH Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46:311–326MathSciNetMATH
13.
Zurück zum Zitat Deng Y, Liu Z, Wu Y (2013) Topology optimization of steady and unsteady incompressible Navier - Stokes flows driven by body forces. Struct Multidiscip Optim 47:555–570MathSciNetMATH Deng Y, Liu Z, Wu Y (2013) Topology optimization of steady and unsteady incompressible Navier - Stokes flows driven by body forces. Struct Multidiscip Optim 47:555–570MathSciNetMATH
14.
Zurück zum Zitat Romero JS, Silva ECN (2014) A topology optimization approach applied to laminar flow machine rotor design. Comput Methods Appl Mech Engrg. 279:268–300MathSciNetMATH Romero JS, Silva ECN (2014) A topology optimization approach applied to laminar flow machine rotor design. Comput Methods Appl Mech Engrg. 279:268–300MathSciNetMATH
15.
Zurück zum Zitat Sá LFN, Novotny AA, Romero JS, Silva ECN (2017) Design optimization of laminar flow machine rotors based on the topological derivative concept. Struct Multidiscip Optim 56:1013–1026MathSciNet Sá LFN, Novotny AA, Romero JS, Silva ECN (2017) Design optimization of laminar flow machine rotors based on the topological derivative concept. Struct Multidiscip Optim 56:1013–1026MathSciNet
16.
Zurück zum Zitat Pingen G, Maute K (2010) Optimal design for non-Newtonian flows using a topology optimization approach. Comput Math Appl 59:2340–2350MathSciNetMATH Pingen G, Maute K (2010) Optimal design for non-Newtonian flows using a topology optimization approach. Comput Math Appl 59:2340–2350MathSciNetMATH
17.
Zurück zum Zitat Zhang B, Liu X, Sun J (2016) Topology optimization design of non-Newtonian roller-type viscous micropumps. Struct Multidiscip Optim 53:409–424MathSciNet Zhang B, Liu X, Sun J (2016) Topology optimization design of non-Newtonian roller-type viscous micropumps. Struct Multidiscip Optim 53:409–424MathSciNet
18.
Zurück zum Zitat Hyun J, Wang S, Yang S (2014) Topology optimization of the shear thinning non-Newtonian fluidic systems for minimizing wall shear stress. Comput Math Appl 67:1154–1170MathSciNetMATH Hyun J, Wang S, Yang S (2014) Topology optimization of the shear thinning non-Newtonian fluidic systems for minimizing wall shear stress. Comput Math Appl 67:1154–1170MathSciNetMATH
19.
Zurück zum Zitat Alonso DH, Romero JS, Silva ECN (2020) Non-newtonian laminar 2D swirl flow design by the topology optimization method. Struct Multidiscip Optim 62:299–321MathSciNet Alonso DH, Romero JS, Silva ECN (2020) Non-newtonian laminar 2D swirl flow design by the topology optimization method. Struct Multidiscip Optim 62:299–321MathSciNet
20.
Zurück zum Zitat Zhang B, Liu X (2015) Topology optimization study of arterial bypass configurations using the level set method. Struct Multidiscip Optim 51:773–798MathSciNet Zhang B, Liu X (2015) Topology optimization study of arterial bypass configurations using the level set method. Struct Multidiscip Optim 51:773–798MathSciNet
21.
Zurück zum Zitat Romero JS, Silva ECN (2017) Non-newtonian laminar flow machine rotor design by using topology optimization. Struct Multidiscip Optim 55:1711–1732MathSciNet Romero JS, Silva ECN (2017) Non-newtonian laminar flow machine rotor design by using topology optimization. Struct Multidiscip Optim 55:1711–1732MathSciNet
22.
Zurück zum Zitat Alexandersen J, Andreasen CS (2020) A review of topology optimisation for fluid-based problems. Fluids. 5(1):1–32 Alexandersen J, Andreasen CS (2020) A review of topology optimisation for fluid-based problems. Fluids. 5(1):1–32
23.
Zurück zum Zitat da Beirão Veiga L, Brezzi F, Marini LD (2013) Virtual elements for linear elasticity problems. SIAM J Numer Anal 51(2):794–812MathSciNetMATH da Beirão Veiga L, Brezzi F, Marini LD (2013) Virtual elements for linear elasticity problems. SIAM J Numer Anal 51(2):794–812MathSciNetMATH
24.
Zurück zum Zitat Gain AL, Talischi C, Paulino GH (2014) On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput Methods Appl Mech Engrg. 282:132–160MathSciNetMATH Gain AL, Talischi C, Paulino GH (2014) On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput Methods Appl Mech Engrg. 282:132–160MathSciNetMATH
25.
Zurück zum Zitat Artioli E, Miranda SC Lovadini, Patruno L (2017) A stress/displacement Virtual Element method for plane elasticity problems. Comput Methods Appl Mech Engrg 325:155–174MathSciNetMATH Artioli E, Miranda SC Lovadini, Patruno L (2017) A stress/displacement Virtual Element method for plane elasticity problems. Comput Methods Appl Mech Engrg 325:155–174MathSciNetMATH
26.
Zurück zum Zitat Artioli E, Beirão da Veiga L, Lovadini C, Sacco E (2017) Arbitrary order 2D virtual elements for polygonal meshes. Computational Mechanics. 60(3):355–377 Artioli E, Beirão da Veiga L, Lovadini C, Sacco E (2017) Arbitrary order 2D virtual elements for polygonal meshes. Computational Mechanics. 60(3):355–377
27.
Zurück zum Zitat Chi H, Beirão da-Veiga L, Paulino GH (2017) Some basic formulations of the virtual element method (VEM) for finite deformations. Comput Methods Appl Mech Eng 318:148–192MathSciNetMATH Chi H, Beirão da-Veiga L, Paulino GH (2017) Some basic formulations of the virtual element method (VEM) for finite deformations. Comput Methods Appl Mech Eng 318:148–192MathSciNetMATH
28.
Zurück zum Zitat Brezzi F, Marini LD (2013) Virtual element methods for plate bending problems. Comput Methods Appl Mech Eng 253:455–462MathSciNetMATH Brezzi F, Marini LD (2013) Virtual element methods for plate bending problems. Comput Methods Appl Mech Eng 253:455–462MathSciNetMATH
29.
Zurück zum Zitat Wriggers P, Rust WT, Reddy BD (2016) A virtual element method for contact. Comput Mech 58:1039–1050MathSciNetMATH Wriggers P, Rust WT, Reddy BD (2016) A virtual element method for contact. Comput Mech 58:1039–1050MathSciNetMATH
30.
Zurück zum Zitat Rivera G, Mora D (2018) A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations. IMA J Numer Anal 2018:5 Rivera G, Mora D (2018) A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations. IMA J Numer Anal 2018:5
31.
Zurück zum Zitat Benedetto MF, Caggiano A, Etse G (2018) Applications of the Virtual Element Method for cracking analysis of cement-based composites using interface elements. In: MECOM 2018. Tucumám, Argentina: Asociación Argentina de Mecánica Computacional; pp 2555–2566 Benedetto MF, Caggiano A, Etse G (2018) Applications of the Virtual Element Method for cracking analysis of cement-based composites using interface elements. In: MECOM 2018. Tucumám, Argentina: Asociación Argentina de Mecánica Computacional; pp 2555–2566
32.
Zurück zum Zitat Antonietti PF, Beirão da-Veiga L, Mora D, Verani M (2014) A stream virtual element formulation of the stokes problem on polygonal meshes. SIAM J Numer Anal 52(1):386–404MathSciNetMATH Antonietti PF, Beirão da-Veiga L, Mora D, Verani M (2014) A stream virtual element formulation of the stokes problem on polygonal meshes. SIAM J Numer Anal 52(1):386–404MathSciNetMATH
33.
Zurück zum Zitat Cangiani A, Gyrya V, Manzini G (2016) The non-conforming virtual element method for the stokes equations. SIAM J Numer Anal 54(6):3411–3435MathSciNetMATH Cangiani A, Gyrya V, Manzini G (2016) The non-conforming virtual element method for the stokes equations. SIAM J Numer Anal 54(6):3411–3435MathSciNetMATH
34.
Zurück zum Zitat Beirão da Veiga L, Lovadina C, Vacca G (2017) Divergence free virtual elements for the stokes problem on polygonal meshes. ESAIM Math Model Numer Anal 51(2):509–535MathSciNetMATH Beirão da Veiga L, Lovadina C, Vacca G (2017) Divergence free virtual elements for the stokes problem on polygonal meshes. ESAIM Math Model Numer Anal 51(2):509–535MathSciNetMATH
35.
Zurück zum Zitat Xin L, Jian L, Zhangxin C (2017) A nonconforming virtual element method for the Stokes problem on general meshes. Comput Methods Appl Mech Eng 320:694–711MathSciNetMATH Xin L, Jian L, Zhangxin C (2017) A nonconforming virtual element method for the Stokes problem on general meshes. Comput Methods Appl Mech Eng 320:694–711MathSciNetMATH
36.
Zurück zum Zitat Ernesto C, Gatica GN (2017) A mixed virtual element method for the pseudostress - velocity formulation of the Stokes problem. IMA J Numer Anal 37:296–331MathSciNetMATH Ernesto C, Gatica GN (2017) A mixed virtual element method for the pseudostress - velocity formulation of the Stokes problem. IMA J Numer Anal 37:296–331MathSciNetMATH
37.
Zurück zum Zitat Beirão da Veiga L, Lovadina C, Vacca G (2018) Virtual Elements for the Navier-Stokes problem on polygonal meshes. SIAM J Numer Anal 56(3):1210–1242MathSciNetMATH Beirão da Veiga L, Lovadina C, Vacca G (2018) Virtual Elements for the Navier-Stokes problem on polygonal meshes. SIAM J Numer Anal 56(3):1210–1242MathSciNetMATH
38.
Zurück zum Zitat Beirão da Veiga L, Mora D, Vacca G (2019) The stokes complex for virtual elements with application to Navier-Stokes flows. J Sci Comput 81(2):990–1018MathSciNetMATH Beirão da Veiga L, Mora D, Vacca G (2019) The stokes complex for virtual elements with application to Navier-Stokes flows. J Sci Comput 81(2):990–1018MathSciNetMATH
39.
Zurück zum Zitat Beirão da Veiga L, Dassi L, Vacca G (2020) The Stokes complex for virtual elements in three dimensions. Math Models Methods Appl Sci 30(3):477–512MathSciNetMATH Beirão da Veiga L, Dassi L, Vacca G (2020) The Stokes complex for virtual elements in three dimensions. Math Models Methods Appl Sci 30(3):477–512MathSciNetMATH
40.
Zurück zum Zitat Xin L, Zhangxin C (2019) The nonconforming virtual element method for the Navier-Stokes equations. Adv Comput Math 45:51–74MathSciNetMATH Xin L, Zhangxin C (2019) The nonconforming virtual element method for the Navier-Stokes equations. Adv Comput Math 45:51–74MathSciNetMATH
41.
Zurück zum Zitat Paulino GH, Gain AL (2015) Bridging art and engineering using Escher-based virtual elements. Struct Multidiscip Optim 51(4):867–883MathSciNet Paulino GH, Gain AL (2015) Bridging art and engineering using Escher-based virtual elements. Struct Multidiscip Optim 51(4):867–883MathSciNet
42.
Zurück zum Zitat Gain AL, Paulino GH, Duarte LS, Menezes IFM (2015) Topology optimization using polytopes. Comput Methods Appl Mech Eng 293:411–430MathSciNetMATH Gain AL, Paulino GH, Duarte LS, Menezes IFM (2015) Topology optimization using polytopes. Comput Methods Appl Mech Eng 293:411–430MathSciNetMATH
43.
Zurück zum Zitat Antonietti PF, Bruggi M, Scacchi S, Verani M (2017) On the virtual element method for topology optimization on polygonal meshes: A numerical study. SIAM J Numer Anal 74:1091–1109MathSciNetMATH Antonietti PF, Bruggi M, Scacchi S, Verani M (2017) On the virtual element method for topology optimization on polygonal meshes: A numerical study. SIAM J Numer Anal 74:1091–1109MathSciNetMATH
44.
Zurück zum Zitat Suárez MAA, Romero JS, Menezes IFM (2018) Topology Optimization for fluid flow problems using the Virtual Element Method. In: MECOM 2018. Tucumám, Argentina: Asociación Argentina de Mecánica Computacional; pp 2037–2046 Suárez MAA, Romero JS, Menezes IFM (2018) Topology Optimization for fluid flow problems using the Virtual Element Method. In: MECOM 2018. Tucumám, Argentina: Asociación Argentina de Mecánica Computacional; pp 2037–2046
45.
Zurück zum Zitat Zhang XS, Chi H, Paulino GH (2020) A virtual element approach. Comput Methods Appl Mech Eng, Adaptive multi-material topology optimization with hyperelastic materials under large deformations, p 370 Zhang XS, Chi H, Paulino GH (2020) A virtual element approach. Comput Methods Appl Mech Eng, Adaptive multi-material topology optimization with hyperelastic materials under large deformations, p 370
46.
Zurück zum Zitat Gartling DK, Hickox CE, Givler RC (1996) Simulation of coupled viscous and porous flow problems. Int J Comput Fluid Dyn 7:23–48MATH Gartling DK, Hickox CE, Givler RC (1996) Simulation of coupled viscous and porous flow problems. Int J Comput Fluid Dyn 7:23–48MATH
47.
Zurück zum Zitat Cho Y, Kensey KR (1991) Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology 28:241–262 Cho Y, Kensey KR (1991) Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows. Biorheology 28:241–262
48.
Zurück zum Zitat Abraham F, Behr M, Heinkenschloss M (2005) Shape optimization in steady blood flow: a numerical study of non-Newtonian effects. Comput Methods Biomech Biomed Eng 8:127–137 Abraham F, Behr M, Heinkenschloss M (2005) Shape optimization in steady blood flow: a numerical study of non-Newtonian effects. Comput Methods Biomech Biomed Eng 8:127–137
49.
Zurück zum Zitat Beirão da Veiga L, Brezzi F, Cangiani A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(1):199–214MathSciNetMATH Beirão da Veiga L, Brezzi F, Cangiani A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(1):199–214MathSciNetMATH
50.
Zurück zum Zitat Beirão da Veiga L, Brezzi F, Marini LD, Russo A (2013) The Hitchhiker’s guide to the virtual element method. Math Models Methods Appl Sci 24(8):1541–1573MathSciNetMATH Beirão da Veiga L, Brezzi F, Marini LD, Russo A (2013) The Hitchhiker’s guide to the virtual element method. Math Models Methods Appl Sci 24(8):1541–1573MathSciNetMATH
51.
Zurück zum Zitat Chi H, Pereira A, Menezes IFM, Paulino GH (2020) Virtual element method (VEM)-based topology optimization: an integrated framework. Struct Multidiscip Optim 62(3):1089–1114MathSciNet Chi H, Pereira A, Menezes IFM, Paulino GH (2020) Virtual element method (VEM)-based topology optimization: an integrated framework. Struct Multidiscip Optim 62(3):1089–1114MathSciNet
52.
Zurück zum Zitat Talischi C, Paulino GH, Pereira A, Menezes IFM (2012) PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct Multidiscip Optim 45(3):309–328MathSciNetMATH Talischi C, Paulino GH, Pereira A, Menezes IFM (2012) PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct Multidiscip Optim 45(3):309–328MathSciNetMATH
53.
Zurück zum Zitat Fish J, Belytschko T (2007) A first course in finite elements. Wiley, HobokenMATH Fish J, Belytschko T (2007) A first course in finite elements. Wiley, HobokenMATH
54.
Zurück zum Zitat Shih TM, Tan CH, Hwang BC (1989) Effects of grid staggering on numerical schemes. Int J Numer Meth Fluids 9:193–212MATH Shih TM, Tan CH, Hwang BC (1989) Effects of grid staggering on numerical schemes. Int J Numer Meth Fluids 9:193–212MATH
55.
Zurück zum Zitat Miller W (1995) Flow in the driven cavity calculated by the lattice Boltzmann method. Phys Rev E 51(4):1013–1026 Miller W (1995) Flow in the driven cavity calculated by the lattice Boltzmann method. Phys Rev E 51(4):1013–1026
56.
Zurück zum Zitat Svanberg K (1987) The Method of Moving Asymptotes-A new method for Structural Optimization. Int J Numer Meth Eng 24:359–373MathSciNetMATH Svanberg K (1987) The Method of Moving Asymptotes-A new method for Structural Optimization. Int J Numer Meth Eng 24:359–373MathSciNetMATH
57.
Zurück zum Zitat Kian JM (2017) Topology optimization method applied to design channels considering non-newtonian fluid flow [Master thesis]. USP—University of São Paulo. São Paulo, Brazil Kian JM (2017) Topology optimization method applied to design channels considering non-newtonian fluid flow [Master thesis]. USP—University of São Paulo. São Paulo, Brazil
58.
Zurück zum Zitat Alonso DH, Nelli EC (2021) Topology optimization for blood flow considering a hemolysis model. Struct Multidiscip Optim 63:2103–2123MathSciNet Alonso DH, Nelli EC (2021) Topology optimization for blood flow considering a hemolysis model. Struct Multidiscip Optim 63:2103–2123MathSciNet
59.
Zurück zum Zitat Brenner SC, Guan Q, Sung L (2017) Some estimates for virtual element methods. Comput Methods Appl Math 17(4):553–574MathSciNetMATH Brenner SC, Guan Q, Sung L (2017) Some estimates for virtual element methods. Comput Methods Appl Math 17(4):553–574MathSciNetMATH
Metadaten
Titel
On the virtual element method for topology optimization of non-Newtonian fluid-flow problems
verfasst von
Miguel A. A. Suárez
Juan S. Romero
Anderson Pereira
Ivan F. M. Menezes
Publikationsdatum
07.04.2022
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 6/2022
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-022-01637-2

Weitere Artikel der Ausgabe 6/2022

Engineering with Computers 6/2022 Zur Ausgabe

Neuer Inhalt