Skip to main content

26.04.2024 | Original

On triangular virtual elements for Kirchhoff–Love shells

verfasst von: T. P. Wu, P. M. Pimenta, P. Wriggers

Erschienen in: Archive of Applied Mechanics

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We develop low-order triangular virtual elements for linear Kirchhoff–Love shells from an engineering point of view. Flat element geometry is considered, which enables a direct shell discretization with no need for a curvilinear coordinate system or predefined initial mapping. Along with the assumed linearity of the problem, the superposition of the uncoupled membrane and plate energies is performed by unifying aspects of the virtual element method when applied to linear two-dimensional elasticity and plate bending problems. We explore low-order cases, namely linear to quadratic membrane displacements and quadratic to cubic deflection polynomial approximations such that no internal degrees of freedom are needed. For all elements, a single stabilization available in the literature is employed to stabilize the element formulations. Numerical examples of static problems show that the presented formulation is capable of solving complex shell problems. Possible extensions are discussed in future works.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Da Veiga, L.B., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013)MathSciNetCrossRef Da Veiga, L.B., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013)MathSciNetCrossRef
2.
Zurück zum Zitat Mengolini, M., Benedetto, M.F., Aragón, A.M.: An engineering perspective to the virtual element method and its interplay with the standard finite element method. Comput. Methods Appl. Mech. Eng. 350, 995–1023 (2019)MathSciNetCrossRef Mengolini, M., Benedetto, M.F., Aragón, A.M.: An engineering perspective to the virtual element method and its interplay with the standard finite element method. Comput. Methods Appl. Mech. Eng. 350, 995–1023 (2019)MathSciNetCrossRef
3.
Zurück zum Zitat Wriggers, P., Hudobivnik, B., Allix, O.: On two simple virtual Kirchhoff-Love plate elements for isotropic and anisotropic materials. Comput. Mech. 69(2), 615–637 (2022)MathSciNetCrossRef Wriggers, P., Hudobivnik, B., Allix, O.: On two simple virtual Kirchhoff-Love plate elements for isotropic and anisotropic materials. Comput. Mech. 69(2), 615–637 (2022)MathSciNetCrossRef
4.
Zurück zum Zitat Pimenta, P.M., Campello, E.M.B.: Shell curvature as an initial deformation: a geometrically exact finite element approach. Int. J. Numer. Meth. Eng. 78(9), 1094–1112 (2009)MathSciNetCrossRef Pimenta, P.M., Campello, E.M.B.: Shell curvature as an initial deformation: a geometrically exact finite element approach. Int. J. Numer. Meth. Eng. 78(9), 1094–1112 (2009)MathSciNetCrossRef
5.
Zurück zum Zitat Wriggers, P., Aldakheel, F., Hudobivnik, B.: Virtual Element Methods in Engineering and Sciences. Springer, Berlin (2023) Wriggers, P., Aldakheel, F., Hudobivnik, B.: Virtual Element Methods in Engineering and Sciences. Springer, Berlin (2023)
6.
Zurück zum Zitat Da Veiga, L.B., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)MathSciNetCrossRef Da Veiga, L.B., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)MathSciNetCrossRef
7.
Zurück zum Zitat Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)MathSciNetCrossRef Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)MathSciNetCrossRef
8.
Zurück zum Zitat Pimenta, P.M., Almeida Neto, E.S., Campello, E.M.B.: A fully nonlinear thin shell model of Kirchhoff–Love type. In: De Mattos Pimenta, P., Wriggers, P. (eds) New Trends in Thin Structures: Formulation, Optimization and Coupled Problems. CISM International Centre for Mechanical Sciences, vol. 519. Springer, Vienna (2010). https://doi.org/10.1007/978-3-7091-0231-2_2 Pimenta, P.M., Almeida Neto, E.S., Campello, E.M.B.: A fully nonlinear thin shell model of Kirchhoff–Love type. In: De Mattos Pimenta, P., Wriggers, P. (eds) New Trends in Thin Structures: Formulation, Optimization and Coupled Problems. CISM International Centre for Mechanical Sciences, vol. 519. Springer, Vienna (2010). https://​doi.​org/​10.​1007/​978-3-7091-0231-2_​2
9.
Zurück zum Zitat Timoshenko, S., Woinowsky-Krieger, S., et al.: Theory of Plates and Shells. McGraw-hill New York, Auckland (1959) Timoshenko, S., Woinowsky-Krieger, S., et al.: Theory of Plates and Shells. McGraw-hill New York, Auckland (1959)
10.
Zurück zum Zitat Da Veiga, L.B., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(08), 1541–1573 (2014)MathSciNetCrossRef Da Veiga, L.B., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(08), 1541–1573 (2014)MathSciNetCrossRef
11.
Zurück zum Zitat Da Veiga, L.B., Brezzi, F., Marini, L.D., Russo, A.: Serendipity nodal VEM spaces. Comput. Fluids 141, 2–12 (2016)MathSciNetCrossRef Da Veiga, L.B., Brezzi, F., Marini, L.D., Russo, A.: Serendipity nodal VEM spaces. Comput. Fluids 141, 2–12 (2016)MathSciNetCrossRef
12.
Zurück zum Zitat Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications. SIAM, Philadelphia (2013)CrossRef Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications. SIAM, Philadelphia (2013)CrossRef
13.
Zurück zum Zitat Batoz, J.-L., Cantin, G., CA, N.P.S.M.: Geometrically Nonlinear Analysis of Shell Structures Using Flat DKT Shell Elements. Monterey, California. Naval Postgraduate School, Monterey (1985) Batoz, J.-L., Cantin, G., CA, N.P.S.M.: Geometrically Nonlinear Analysis of Shell Structures Using Flat DKT Shell Elements. Monterey, California. Naval Postgraduate School, Monterey (1985)
14.
Zurück zum Zitat Antonietti, P.F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28(02), 387–407 (2018)MathSciNetCrossRef Antonietti, P.F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28(02), 387–407 (2018)MathSciNetCrossRef
15.
Zurück zum Zitat De Bellis, M.L., Wriggers, P., Hudobivnik, B.: Serendipity virtual element formulation for nonlinear elasticity. Comput. Struct. 223, 106094 (2019)CrossRef De Bellis, M.L., Wriggers, P., Hudobivnik, B.: Serendipity virtual element formulation for nonlinear elasticity. Comput. Struct. 223, 106094 (2019)CrossRef
16.
Zurück zum Zitat Chen, A., Sukumar, N.: Stabilization-free serendipity virtual element method for plane elasticity. Comput. Methods Appl. Mech. Eng. 404, 115784 (2023)MathSciNetCrossRef Chen, A., Sukumar, N.: Stabilization-free serendipity virtual element method for plane elasticity. Comput. Methods Appl. Mech. Eng. 404, 115784 (2023)MathSciNetCrossRef
17.
Zurück zum Zitat Korelc, J., Wriggers, P.: Automation of Finite Element Methods. Springer, Switzerland (2016)CrossRef Korelc, J., Wriggers, P.: Automation of Finite Element Methods. Springer, Switzerland (2016)CrossRef
18.
Zurück zum Zitat Sanchez, M.L., Pimenta, P.M., Ibrahimbegovic, A.: A simple geometrically exact finite element for thin shells-part 1: statics. Comput. Mech. 1–21 (2023) Sanchez, M.L., Pimenta, P.M., Ibrahimbegovic, A.: A simple geometrically exact finite element for thin shells-part 1: statics. Comput. Mech. 1–21 (2023)
19.
Zurück zum Zitat Krysl, P., Chen, J.-S.: Benchmarking computational shell models. Arch. Comput. Methods Eng. 30(1), 301–315 (2023)CrossRef Krysl, P., Chen, J.-S.: Benchmarking computational shell models. Arch. Comput. Methods Eng. 30(1), 301–315 (2023)CrossRef
20.
Zurück zum Zitat Schoop, H., Hornig, J., Wenzel, T.: Remarks on Raasch’s hook. Tech. Mech. Eur. J. Eng. Mech. 22(4), 259–270 (2002) Schoop, H., Hornig, J., Wenzel, T.: Remarks on Raasch’s hook. Tech. Mech. Eur. J. Eng. Mech. 22(4), 259–270 (2002)
21.
Zurück zum Zitat Knight, N., Jr.: Raasch challenge for shell elements. AIAA J. 35(2), 375–381 (1997)CrossRef Knight, N., Jr.: Raasch challenge for shell elements. AIAA J. 35(2), 375–381 (1997)CrossRef
22.
Zurück zum Zitat Cook, R.D., Young, W.C.: Advanced Mechanics of Materials. Prentice Hall, New Jersey (1999) Cook, R.D., Young, W.C.: Advanced Mechanics of Materials. Prentice Hall, New Jersey (1999)
23.
Zurück zum Zitat Wriggers, P., Hudobivnik, B.: Virtual element formulation for gradient elasticity. Acta. Mech. Sin. 39(4), 722306 (2023)MathSciNetCrossRef Wriggers, P., Hudobivnik, B.: Virtual element formulation for gradient elasticity. Acta. Mech. Sin. 39(4), 722306 (2023)MathSciNetCrossRef
24.
Zurück zum Zitat Xu, B.-B., Peng, F., Wriggers, P.: Stabilization-free virtual element method for finite strain applications. Comput. Methods Appl. Mech. Eng. 417, 116555 (2023)MathSciNetCrossRef Xu, B.-B., Peng, F., Wriggers, P.: Stabilization-free virtual element method for finite strain applications. Comput. Methods Appl. Mech. Eng. 417, 116555 (2023)MathSciNetCrossRef
Metadaten
Titel
On triangular virtual elements for Kirchhoff–Love shells
verfasst von
T. P. Wu
P. M. Pimenta
P. Wriggers
Publikationsdatum
26.04.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-024-02591-9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.