Skip to main content
Erschienen in: Journal of Materials Science 12/2018

19.03.2018 | Energy materials

One-pot hydrothermal fabrication and enhanced lithium storage capability of SnO2 nanorods intertangled with carbon nanotubes and graphene nanosheets

verfasst von: Qinxing Xie, Yating Zhu, Peng Zhao, Yufeng Zhang, Shihua Wu

Erschienen in: Journal of Materials Science | Ausgabe 12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A three-dimensional (3D) nanoarchitectured ternary composite of SnO2 nanorods intertangled with multiwalled carbon nanotubes and graphene nanosheets (SnO2/CNTs/Gr) was synthesized via one-pot template-free hydrothermal method and investigated as anode for lithium-ion batteries. Compared to bare SnO2 and corresponding binary composites including SnO2/CNTs and SnO2/Gr, SnO2/CNTs/Gr shows significantly improved cycling stability and rate performance. The initial discharge specific capacity of SnO2/CNTs/Gr is 1391 mAh g−1 and remains 522 mAh g−1 after 50 cycles at a current density of 100 mA g−1. Meanwhile, the composite shows excellent rate reversibility. For example, 120 mAh g−1 can be retained at a high current density of up to 1600 mA g−1, and 582 mAh g−1 can still be retrieved once the current density is switched back to 50 mA g−1. The carbon nanotubes and graphene nanosheets in the composites play different enhancing effect. The significantly improved energy storage capability of SnO2/CNTs/Gr can be attributed to a synergistic effect of the intertangled CNTs and graphene nanosheets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang J, Zhu Y, Cao C, Butt FK (2015) Microwave-assisted and large-scale synthesis of SnO2/carbon-nanotube hybrids with high lithium storage capacity. RSC Adv 5:58568–58573CrossRef Zhang J, Zhu Y, Cao C, Butt FK (2015) Microwave-assisted and large-scale synthesis of SnO2/carbon-nanotube hybrids with high lithium storage capacity. RSC Adv 5:58568–58573CrossRef
2.
Zurück zum Zitat Yang S, Yue W, Zhu J, Ren Y, Yang X (2013) Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv Funct Mater 23:3570–3576CrossRef Yang S, Yue W, Zhu J, Ren Y, Yang X (2013) Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries. Adv Funct Mater 23:3570–3576CrossRef
3.
Zurück zum Zitat Zhou Z, Xie W, Li S, Jiang X, He D, Peng S, Ma F (2015) Facile synthesis of porous Fe3O4@C nanospheres as high-performance anode for lithium-ion battery. J Solid State Electrochem 19:1211–1215CrossRef Zhou Z, Xie W, Li S, Jiang X, He D, Peng S, Ma F (2015) Facile synthesis of porous Fe3O4@C nanospheres as high-performance anode for lithium-ion battery. J Solid State Electrochem 19:1211–1215CrossRef
4.
Zurück zum Zitat Wang F, Song X, Yao G, Zhao M, Liu R, Xu M, Sun Z (2012) Carbon-coated mesoporous SnO2 nanospheres as anode material for lithium ion batteries. Scr Mater 66:562–565CrossRef Wang F, Song X, Yao G, Zhao M, Liu R, Xu M, Sun Z (2012) Carbon-coated mesoporous SnO2 nanospheres as anode material for lithium ion batteries. Scr Mater 66:562–565CrossRef
5.
Zurück zum Zitat Dou Y, Xu J, Ruan B, Liu Q, Pan Y, Sun Z, Dou SX (2016) Atomic layer-by-layer Co3O4/graphene composite for high performance lithium-ion batteries. Adv Energy Mater 6:1501835-1–1501835-8CrossRef Dou Y, Xu J, Ruan B, Liu Q, Pan Y, Sun Z, Dou SX (2016) Atomic layer-by-layer Co3O4/graphene composite for high performance lithium-ion batteries. Adv Energy Mater 6:1501835-1–1501835-8CrossRef
6.
Zurück zum Zitat Huang J, Zhu J, Cheng K, Xu Y, Cao D, Wang G (2012) Preparation of Co3O4 nanowires grown on nickel foam with superior electrochemical capacitance. Electrochim Acta 75:273–278CrossRef Huang J, Zhu J, Cheng K, Xu Y, Cao D, Wang G (2012) Preparation of Co3O4 nanowires grown on nickel foam with superior electrochemical capacitance. Electrochim Acta 75:273–278CrossRef
7.
Zurück zum Zitat Jiang Y, Zhang D, Li Y, Yuan T, Bahlawane N, Liang C, Sun W, Lu Y, Yan M (2014) Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy 4:23–30CrossRef Jiang Y, Zhang D, Li Y, Yuan T, Bahlawane N, Liang C, Sun W, Lu Y, Yan M (2014) Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy 4:23–30CrossRef
8.
Zurück zum Zitat Chen M, Liu J, Chao D, Wang J, Yin J, Lin J, Fan H, Shen X (2014) Porous α-Fe2O3 nanorods supported on carbon nanotubes–graphene foam as superior anode for lithium ion batteries. Nano Energy 9:364–372CrossRef Chen M, Liu J, Chao D, Wang J, Yin J, Lin J, Fan H, Shen X (2014) Porous α-Fe2O3 nanorods supported on carbon nanotubes–graphene foam as superior anode for lithium ion batteries. Nano Energy 9:364–372CrossRef
9.
Zurück zum Zitat Yu A, Park HW, Davies A, Higgins DC, Chen Z, Xiao X (2011) Free-standing layer-by-layer hybrid thin film of graphene–MnO2 nanotube as anode for lithium ion batteries. J Phys Chem Lett 2:1855–1860CrossRef Yu A, Park HW, Davies A, Higgins DC, Chen Z, Xiao X (2011) Free-standing layer-by-layer hybrid thin film of graphene–MnO2 nanotube as anode for lithium ion batteries. J Phys Chem Lett 2:1855–1860CrossRef
10.
Zurück zum Zitat Shang Y, Yu Z, Xie C, Xie Q, Wu S, Zhang Y, Guan Y (2015) A facile fabrication of MnO2/graphene hybrid microspheres with a porous secondary structure for high performance supercapacitors. J Solid State Electrochem 19:949–956CrossRef Shang Y, Yu Z, Xie C, Xie Q, Wu S, Zhang Y, Guan Y (2015) A facile fabrication of MnO2/graphene hybrid microspheres with a porous secondary structure for high performance supercapacitors. J Solid State Electrochem 19:949–956CrossRef
11.
Zurück zum Zitat Zou Y, Zhou X, Xie J, Liao Q, Huang B, Yang J (2014) A corn-like graphene–SnO2–carbon nanofiber composite as a high-performance Li-storage material. J Mater Chem A 2:4524–4527CrossRef Zou Y, Zhou X, Xie J, Liao Q, Huang B, Yang J (2014) A corn-like graphene–SnO2–carbon nanofiber composite as a high-performance Li-storage material. J Mater Chem A 2:4524–4527CrossRef
12.
Zurück zum Zitat Yao J, Park JS, Konstantinov K, Wang GX, Ahn JH, Wang J, Liu HK (2009) Electrochemical performance of nanocrystalline SnO2/carbon nanotube composites as anode in lithium-ion cells. J Nanosci Nanotechnol 9:1474–1478CrossRef Yao J, Park JS, Konstantinov K, Wang GX, Ahn JH, Wang J, Liu HK (2009) Electrochemical performance of nanocrystalline SnO2/carbon nanotube composites as anode in lithium-ion cells. J Nanosci Nanotechnol 9:1474–1478CrossRef
13.
Zurück zum Zitat Liang J, Yu XY, Zhou H, Wu HB, Ding S, Lou XW (2014) Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew Chem Int Ed Engl 53:12803–12807CrossRef Liang J, Yu XY, Zhou H, Wu HB, Ding S, Lou XW (2014) Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew Chem Int Ed Engl 53:12803–12807CrossRef
14.
Zurück zum Zitat Zhou D, Song W-L, Li X, Fan L-Z (2016) Hierarchical porous reduced graphene oxide/SnO2 networks as highly stable anodes for lithium-ion batteries. Electrochim Acta 207:9–15CrossRef Zhou D, Song W-L, Li X, Fan L-Z (2016) Hierarchical porous reduced graphene oxide/SnO2 networks as highly stable anodes for lithium-ion batteries. Electrochim Acta 207:9–15CrossRef
15.
Zurück zum Zitat Tian Q, Tian Y, Zhang Z, Yang L, S-i Hirano (2015) Facile one-pot hydrothermal with subsequent carbonization preparation of hollow tin dioxide@carbon nanostructures as high-performance anode for lithium-ion batteries. J Power Sources 280:397–405CrossRef Tian Q, Tian Y, Zhang Z, Yang L, S-i Hirano (2015) Facile one-pot hydrothermal with subsequent carbonization preparation of hollow tin dioxide@carbon nanostructures as high-performance anode for lithium-ion batteries. J Power Sources 280:397–405CrossRef
16.
Zurück zum Zitat Xu G, Zheng C, Zhang Q, Huang J, Zhao M, Nie J, Wang X, Wei F (2011) Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res 4:870–881CrossRef Xu G, Zheng C, Zhang Q, Huang J, Zhao M, Nie J, Wang X, Wei F (2011) Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res 4:870–881CrossRef
17.
Zurück zum Zitat Ji X, Huang X, Liu J, Jiang J, Li X, Ding R, Hu Y, Wu F, Li Q (2010) Carbon-coated SnO2 nanorod array for lithium-ion battery anode material. Nanoscale Res Lett 5:649–653CrossRef Ji X, Huang X, Liu J, Jiang J, Li X, Ding R, Hu Y, Wu F, Li Q (2010) Carbon-coated SnO2 nanorod array for lithium-ion battery anode material. Nanoscale Res Lett 5:649–653CrossRef
18.
Zurück zum Zitat Liu J, Li Y, Huang X, Ding R, Hu Y, Jiang J, Liao L (2009) Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. J Mater Chem 19:1859–1864CrossRef Liu J, Li Y, Huang X, Ding R, Hu Y, Jiang J, Liao L (2009) Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. J Mater Chem 19:1859–1864CrossRef
19.
Zurück zum Zitat Zhao NH, Yang LC, Zhang P, Wang GJ, Wang B, Yao BD, Wu YP (2010) Polycrystalline SnO2 nanowires coated with amorphous carbon nanotube as anode material for lithium ion batteries. Mater Lett 64:972–975CrossRef Zhao NH, Yang LC, Zhang P, Wang GJ, Wang B, Yao BD, Wu YP (2010) Polycrystalline SnO2 nanowires coated with amorphous carbon nanotube as anode material for lithium ion batteries. Mater Lett 64:972–975CrossRef
20.
Zurück zum Zitat Li Q, Li W, Feng Q, Wang P, Mao M, Liu J, Zhou L, Wang H, Yao H (2014) Thickness-dependent fracture of amorphous carbon coating on SnO2 nanowire electrodes. Carbon 80:793–798CrossRef Li Q, Li W, Feng Q, Wang P, Mao M, Liu J, Zhou L, Wang H, Yao H (2014) Thickness-dependent fracture of amorphous carbon coating on SnO2 nanowire electrodes. Carbon 80:793–798CrossRef
21.
Zurück zum Zitat Yu L, Guan B, Xiao W, Lou XW (2015) Formation of yolk-shelled Ni–Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion Batteries. Adv Energy Mater 5:1500981-1–1500981-7 Yu L, Guan B, Xiao W, Lou XW (2015) Formation of yolk-shelled Ni–Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion Batteries. Adv Energy Mater 5:1500981-1–1500981-7
22.
Zurück zum Zitat Jin R, Ma Y, Sun Y, Li H, Wang Q, Chen G (2017) Manganese cobalt oxide (MnCo2O4) hollow spheres as high capacity anode materials for lithium-ion batteries. Energy Technol 5:293–299CrossRef Jin R, Ma Y, Sun Y, Li H, Wang Q, Chen G (2017) Manganese cobalt oxide (MnCo2O4) hollow spheres as high capacity anode materials for lithium-ion batteries. Energy Technol 5:293–299CrossRef
23.
Zurück zum Zitat Jin R, Jiang H, Sun Y, Ma Y, Li H, Chen G (2016) Fabrication of NiFe2O4/C hollow spheres constructed by mesoporous nanospheres for high-performance lithium-ion batteries. Chem Eng J 303:501–510CrossRef Jin R, Jiang H, Sun Y, Ma Y, Li H, Chen G (2016) Fabrication of NiFe2O4/C hollow spheres constructed by mesoporous nanospheres for high-performance lithium-ion batteries. Chem Eng J 303:501–510CrossRef
24.
Zurück zum Zitat Noerochim L, Wang J-Z, Chou S-L, Li H-J, Liu H-K (2010) SnO2-coated multiwall carbon nanotube composite anode materials for rechargeable lithium-ion batteries. Electrochim Acta 56:314–320CrossRef Noerochim L, Wang J-Z, Chou S-L, Li H-J, Liu H-K (2010) SnO2-coated multiwall carbon nanotube composite anode materials for rechargeable lithium-ion batteries. Electrochim Acta 56:314–320CrossRef
25.
Zurück zum Zitat Chou S-L, Wang J-Z, Zhong C, Rahman MM, Liu H-K, Dou S-X (2009) A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochim Acta 54:7519–7524CrossRef Chou S-L, Wang J-Z, Zhong C, Rahman MM, Liu H-K, Dou S-X (2009) A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochim Acta 54:7519–7524CrossRef
26.
Zurück zum Zitat Huang B, Yang J, Zou Y, Ma L, Zhou X (2014) Sonochemical synthesis of SnO2/carbon nanotubes encapsulated in graphene sheets composites for lithium ion batteries with superior electrochemical performance. Electrochim Acta 143:63–69CrossRef Huang B, Yang J, Zou Y, Ma L, Zhou X (2014) Sonochemical synthesis of SnO2/carbon nanotubes encapsulated in graphene sheets composites for lithium ion batteries with superior electrochemical performance. Electrochim Acta 143:63–69CrossRef
27.
Zurück zum Zitat Guo J, Jiang B, Zhang X, Liu H (2014) Monodisperse SnO2 anchored reduced graphene oxide nanocomposites as negative electrode with high rate capability and long cyclability for lithium-ion batteries. J Power Sources 262:15–22CrossRef Guo J, Jiang B, Zhang X, Liu H (2014) Monodisperse SnO2 anchored reduced graphene oxide nanocomposites as negative electrode with high rate capability and long cyclability for lithium-ion batteries. J Power Sources 262:15–22CrossRef
28.
Zurück zum Zitat Jung HY, Hong S, Yu A, Jung SM, Jeoung SK, Jung YJ (2015) Efficient lithium storage from modified vertically aligned carbon nanotubes with open-ends. RSC Adv 5:68875–68880CrossRef Jung HY, Hong S, Yu A, Jung SM, Jeoung SK, Jung YJ (2015) Efficient lithium storage from modified vertically aligned carbon nanotubes with open-ends. RSC Adv 5:68875–68880CrossRef
29.
Zurück zum Zitat Zhu J, Yang D, Yin Z, Yan Q, Zhang H (2014) Graphene and graphene-based materials for energy storage applications. Small 10:3480–3498CrossRef Zhu J, Yang D, Yin Z, Yan Q, Zhang H (2014) Graphene and graphene-based materials for energy storage applications. Small 10:3480–3498CrossRef
30.
Zurück zum Zitat Abbas SM, Hussain ST, Ali S, Ahmad N, Ali N, Munawar KS (2013) Synthesis of carbon nanotubes anchored with mesoporous Co3O4 nanoparticles as anode material for lithium-ion batteries. Electrochim Acta 105:481–488CrossRef Abbas SM, Hussain ST, Ali S, Ahmad N, Ali N, Munawar KS (2013) Synthesis of carbon nanotubes anchored with mesoporous Co3O4 nanoparticles as anode material for lithium-ion batteries. Electrochim Acta 105:481–488CrossRef
31.
Zurück zum Zitat Jin R, Wang Q, Cui Y, Zhang S (2017) MFe2O4 (M = Ni, Co) nanoparticles anchored on amorphous carbon coated multiwalled carbon nanotubes as anode materials for lithium-ion batteries. Carbon 123:448–459CrossRef Jin R, Wang Q, Cui Y, Zhang S (2017) MFe2O4 (M = Ni, Co) nanoparticles anchored on amorphous carbon coated multiwalled carbon nanotubes as anode materials for lithium-ion batteries. Carbon 123:448–459CrossRef
32.
Zurück zum Zitat Xu CSJ, Gao L (2009) Synthesis of multiwalled carbon nanotubes that are both filled and coated by SnO2 nanoparticles and their high performance in lithium-ion batteries. J Phys Chem C 113:20509–20513CrossRef Xu CSJ, Gao L (2009) Synthesis of multiwalled carbon nanotubes that are both filled and coated by SnO2 nanoparticles and their high performance in lithium-ion batteries. J Phys Chem C 113:20509–20513CrossRef
33.
Zurück zum Zitat Liu X, Wu M, Li M, Pan X, Chen J, Bao X (2013) Facile encapsulation of nanosized SnO2 particles in carbon nanotubes as an efficient anode of Li-ion batteries. J Mater Chem A 1:9527–9535CrossRef Liu X, Wu M, Li M, Pan X, Chen J, Bao X (2013) Facile encapsulation of nanosized SnO2 particles in carbon nanotubes as an efficient anode of Li-ion batteries. J Mater Chem A 1:9527–9535CrossRef
34.
Zurück zum Zitat Wang D, Yang J, Li X, Geng D, Li R, Cai M, Sham T-K, Sun X (2013) Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy Environ Sci 6:2900–2906CrossRef Wang D, Yang J, Li X, Geng D, Li R, Cai M, Sham T-K, Sun X (2013) Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy Environ Sci 6:2900–2906CrossRef
35.
Zurück zum Zitat Kravchyk K, Protesescu L, Bodnarchuk MI, Krumeich F, Yarema M, Walter M, Guntlin C, Kovalenko MV (2013) Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. J Am Chem Soc 135:4199–4202CrossRef Kravchyk K, Protesescu L, Bodnarchuk MI, Krumeich F, Yarema M, Walter M, Guntlin C, Kovalenko MV (2013) Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. J Am Chem Soc 135:4199–4202CrossRef
36.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRef
37.
Zurück zum Zitat Geng Y, Wang SJ, Kim JK (2009) Preparation of graphite nanoplatelets and graphene sheets. J Colloid Interface Sci 336:592–598CrossRef Geng Y, Wang SJ, Kim JK (2009) Preparation of graphite nanoplatelets and graphene sheets. J Colloid Interface Sci 336:592–598CrossRef
38.
Zurück zum Zitat Meng YH, Tang CY, Tsui CP, Uskokovic PS (2010) Fabrication and characterization of HA–ZrO2–MWCNT ceramic composites. J Compos Mater 44:871–882CrossRef Meng YH, Tang CY, Tsui CP, Uskokovic PS (2010) Fabrication and characterization of HA–ZrO2–MWCNT ceramic composites. J Compos Mater 44:871–882CrossRef
39.
Zurück zum Zitat Shimodaira N, Masui A (2002) Raman spectroscopic investigations of activated carbon materials. J Appl Phys 92:902–909CrossRef Shimodaira N, Masui A (2002) Raman spectroscopic investigations of activated carbon materials. J Appl Phys 92:902–909CrossRef
40.
Zurück zum Zitat Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
41.
Zurück zum Zitat Liu H, Chen J, Hu R, Yang X, Ruan H, Su Y, Xiao W (2015) Facile one-pot synthesis of self-assembled 3-D flower-like SnO2 architectures and their electrochemical properties. J Mater Sci Mater Electron 27:3968–3973CrossRef Liu H, Chen J, Hu R, Yang X, Ruan H, Su Y, Xiao W (2015) Facile one-pot synthesis of self-assembled 3-D flower-like SnO2 architectures and their electrochemical properties. J Mater Sci Mater Electron 27:3968–3973CrossRef
42.
Zurück zum Zitat Wang R, Xu C, Sun J, Gao L, Yao H (2014) Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage. ACS Appl Mater Interfaces 6:3427–3436CrossRef Wang R, Xu C, Sun J, Gao L, Yao H (2014) Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage. ACS Appl Mater Interfaces 6:3427–3436CrossRef
43.
Zurück zum Zitat Wu P, Du N, Zhang H, Yu J, Qi Y, Yang D (2011) Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries. Nanoscale 3:746–750CrossRef Wu P, Du N, Zhang H, Yu J, Qi Y, Yang D (2011) Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries. Nanoscale 3:746–750CrossRef
44.
Zurück zum Zitat Liu H, Huang J, Li X, Liu J, Zhang Y, Du K (2012) Flower-like SnO2/graphene composite for high-capacity lithium storage. Appl Surf Sci 258:4917–4921CrossRef Liu H, Huang J, Li X, Liu J, Zhang Y, Du K (2012) Flower-like SnO2/graphene composite for high-capacity lithium storage. Appl Surf Sci 258:4917–4921CrossRef
45.
Zurück zum Zitat Jiang Y, Yuan T, Sun W, Yan M (2012) Electrostatic spray deposition of porous SnO2/graphene anode films and their enhanced lithium-storage properties. ACS Appl Mater Interfaces 4:6216–6220CrossRef Jiang Y, Yuan T, Sun W, Yan M (2012) Electrostatic spray deposition of porous SnO2/graphene anode films and their enhanced lithium-storage properties. ACS Appl Mater Interfaces 4:6216–6220CrossRef
46.
Zurück zum Zitat Li W, Yoon D, Hwang J, Chang W, Kim J (2015) One-pot route to synthesize SnO2-reduced graphene oxide composites and their enhanced electrochemical performance as anodes in lithium-ion batteries. J Power Sources 293:1024–1031CrossRef Li W, Yoon D, Hwang J, Chang W, Kim J (2015) One-pot route to synthesize SnO2-reduced graphene oxide composites and their enhanced electrochemical performance as anodes in lithium-ion batteries. J Power Sources 293:1024–1031CrossRef
47.
Zurück zum Zitat Mukai SR, Hasegawa T, Takagi M, Tamon H (2004) Reduction of irreversible capacities of amorphous carbon materials for lithium ion battery anodes by Li2CO3 addition. Carbon 42:837–842CrossRef Mukai SR, Hasegawa T, Takagi M, Tamon H (2004) Reduction of irreversible capacities of amorphous carbon materials for lithium ion battery anodes by Li2CO3 addition. Carbon 42:837–842CrossRef
48.
Zurück zum Zitat Yan C, Yang J, Xie Q, Lu Z, Liu B, Xie C, Wu S, Zhang Y, Guan Y (2015) Novel nanoarchitectured Zn2SnO4 anchored on porous carbon as high performance anodes for lithium ion batteries. Mater Lett 138:120–123CrossRef Yan C, Yang J, Xie Q, Lu Z, Liu B, Xie C, Wu S, Zhang Y, Guan Y (2015) Novel nanoarchitectured Zn2SnO4 anchored on porous carbon as high performance anodes for lithium ion batteries. Mater Lett 138:120–123CrossRef
49.
Zurück zum Zitat Xie Q, Bao R, Zheng A, Zhang Y, Wu S, Xie C, Zhao P (2016) Sustainable low-cost green electrodes with high volumetric capacitance for aqueous symmetric supercapacitors with high energy density. ACS Sustain Chem Eng 4:1422–1430CrossRef Xie Q, Bao R, Zheng A, Zhang Y, Wu S, Xie C, Zhao P (2016) Sustainable low-cost green electrodes with high volumetric capacitance for aqueous symmetric supercapacitors with high energy density. ACS Sustain Chem Eng 4:1422–1430CrossRef
Metadaten
Titel
One-pot hydrothermal fabrication and enhanced lithium storage capability of SnO2 nanorods intertangled with carbon nanotubes and graphene nanosheets
verfasst von
Qinxing Xie
Yating Zhu
Peng Zhao
Yufeng Zhang
Shihua Wu
Publikationsdatum
19.03.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2224-5

Weitere Artikel der Ausgabe 12/2018

Journal of Materials Science 12/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.