Skip to main content
Erschienen in: Wireless Personal Communications 2/2017

08.08.2016

Opportunistic Selection of Threshold in Cognitive Radio Networks

verfasst von: Gaurav Verma, O. P. Sahu

Erschienen in: Wireless Personal Communications | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In a cognitive radio (CR) system based on energy detection spectrum sensing scheme, the threshold is mainly selected, either under a given detection probability of \(\overline{{P_{d} }}\) known as the constant detection rate (CDR) principle, or under the given false alarm probability of \(\overline{{P_{fa} }}\), known as the constant false alarm rate (CFAR) principle. In order to promise sufficient quality of service (QoS) to the licensed users, the threshold selection under the CDR principle is most favorable. However, this undesirably degrades throughput of the cognitive users, mainly under the most suitable conditions of spectrum reuse when the licensed user is located far away from the sensing node where chances of interference are negligible. To improve the licensed spectrum utilization, this paper proposes a technique for the selection of threshold based on the opportunistic use of CDR and CFAR principles depending upon the distance d of licensed user from the unlicensed one. Under the proposed approach, when the distance d is less than or equal to a formulated critical distance d c (d ≤ d c ), then, to promise sufficient QoS to the licensed users, the CDR principle is used. But for the reverse case d > d c , to maximum exploit the spectrum reuse conditions, the advantages of CFAR principle are relished. The CR system under the proposed approach obtains a significant gain in its throughput compared to the case where CDR principle is used blindly.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Depending on the values of parameters assumed, the critical distance d c may change accordingly.
 
2
Due to properties of Q function \(Q\left( x \right)\), sharp variations are shown only for a range \(x \in \left( { - 3, 3} \right)\), and beyond this, the variations are very small to notice. So, for a range of variable on the x-axis, the unnoticeable variations are shown in the simulation graph of Figs. 3, 4 and 5.
 
3
The distance of primary transmitter from the sensing node can be estimated at the CR end with the help of received SNR from the primary transmitter, use of feedback information from PU side, or using any of the work as in [3237]. However, this problem remains to be investigated in a separate work.
 
Literatur
1.
Zurück zum Zitat Federal Communications Commission. (2002, Nov.). Spectrum policy task force report. FCC 02-155. Federal Communications Commission. (2002, Nov.). Spectrum policy task force report. FCC 02-155.
2.
Zurück zum Zitat Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6, 13–18.CrossRef Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6, 13–18.CrossRef
3.
Zurück zum Zitat Liang, Y. C., Zeng, Y., et al. (2007). Sensing throughput tradeoff for cognitive radio networks. In IEEE international conference on communications (ICC) (pp. 5330–5335). Liang, Y. C., Zeng, Y., et al. (2007). Sensing throughput tradeoff for cognitive radio networks. In IEEE international conference on communications (ICC) (pp. 5330–5335).
4.
Zurück zum Zitat Liang, Y. C., Zeng, Y., et al. (2008). Sensing throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRef Liang, Y. C., Zeng, Y., et al. (2008). Sensing throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRef
5.
Zurück zum Zitat Verma, G., & Sahu, O. P. (2015). Interference aware optimization of throughput in cognitive radio system. Defence Science Journal, 65(4), 312–318.CrossRef Verma, G., & Sahu, O. P. (2015). Interference aware optimization of throughput in cognitive radio system. Defence Science Journal, 65(4), 312–318.CrossRef
6.
Zurück zum Zitat Stotas, S., & Nallanathan, A. (2010). Overcoming the sensing-throughput tradeoff in cognitive radio networks. In IEEE international conference on communications (ICC) (pp. 1–5). doi:10.1109/ICC.2010.5502792. Stotas, S., & Nallanathan, A. (2010). Overcoming the sensing-throughput tradeoff in cognitive radio networks. In IEEE international conference on communications (ICC) (pp. 1–5). doi:10.​1109/​ICC.​2010.​5502792.
7.
Zurück zum Zitat Stotas, S., & Nallanathan, A. (2012). On the throughput and spectrum sensing enhancement of opportunistic spectrum access cognitive radio networks. IEEE Transactions On Wireless Communications, 11(1), 97–101.CrossRef Stotas, S., & Nallanathan, A. (2012). On the throughput and spectrum sensing enhancement of opportunistic spectrum access cognitive radio networks. IEEE Transactions On Wireless Communications, 11(1), 97–101.CrossRef
8.
9.
Zurück zum Zitat Stotas, S., & Nallanathan, A. (2010). On the throughput maximization of spectrum sharing cognitive radio networks. In IEEE Global Telecommunications Conference (GLOBECOM) (pp. 1–5). doi:10.1109/GLOCOM.2010.5683516. Stotas, S., & Nallanathan, A. (2010). On the throughput maximization of spectrum sharing cognitive radio networks. In IEEE Global Telecommunications Conference (GLOBECOM) (pp. 1–5). doi:10.​1109/​GLOCOM.​2010.​5683516.
10.
Zurück zum Zitat Federal Communications Commission. (2002, Nov.). Spectrum policy task force report. FCC 02-155. Federal Communications Commission. (2002, Nov.). Spectrum policy task force report. FCC 02-155.
12.
Zurück zum Zitat Stotas, S., & Nallanathan, A. (2011). Enhancing the capacity of spectrum sharing cognitive radio networks. IEEE Transactions on Vehicular Technology, 60(8), 3768–3779.CrossRef Stotas, S., & Nallanathan, A. (2011). Enhancing the capacity of spectrum sharing cognitive radio networks. IEEE Transactions on Vehicular Technology, 60(8), 3768–3779.CrossRef
13.
Zurück zum Zitat Xie, J. Q., & Chen, J. (2012). An adaptive double-threshold spectrum sensing algorithm under noise uncertainty. In IEEE 12th international conference on computer and information technology (CIT) (pp. 824–827). doi:10.1109/CIT.2012.171. Xie, J. Q., & Chen, J. (2012). An adaptive double-threshold spectrum sensing algorithm under noise uncertainty. In IEEE 12th international conference on computer and information technology (CIT) (pp. 824–827). doi:10.​1109/​CIT.​2012.​171.
14.
Zurück zum Zitat Liu, S.-Q., et al. (2012). Hierarchical cooperative spectrum sensing based on double thresholds energy detection. IEEE Communications Letters, 16(7), 1096–1099.CrossRef Liu, S.-Q., et al. (2012). Hierarchical cooperative spectrum sensing based on double thresholds energy detection. IEEE Communications Letters, 16(7), 1096–1099.CrossRef
15.
Zurück zum Zitat Wu, J., et al. (2009). An energy detection algorithm based on double-threshold in cognitive radio systems. In IEEE, 1st international conference on information science and engineering (ICISE) (pp. 493–496). doi:10.1109/ICISE.2009.257. Wu, J., et al. (2009). An energy detection algorithm based on double-threshold in cognitive radio systems. In IEEE, 1st international conference on information science and engineering (ICISE) (pp. 493–496). doi:10.​1109/​ICISE.​2009.​257.
16.
Zurück zum Zitat Digham, F., et al. (2007). On the energy detection of unknown signal over fading channels. IEEE Transactions on Communications, 55(1), 21–24.CrossRef Digham, F., et al. (2007). On the energy detection of unknown signal over fading channels. IEEE Transactions on Communications, 55(1), 21–24.CrossRef
17.
Zurück zum Zitat Kay, S. M. (1998). Fundamentals of statistical signal processing. Volume 2: Detection theory. Upper Saddle River, NJ: Prentice-Hall. Kay, S. M. (1998). Fundamentals of statistical signal processing. Volume 2: Detection theory. Upper Saddle River, NJ: Prentice-Hall.
18.
Zurück zum Zitat Khalid, L. (2014). Efficient techniques for cooperative spectrum sensing in cognitive radio networks. PhD Thesis, Department of Electrical and Computer Engineering, Ryerson University, Toronto, ON, Canada, pp. 1–206. Khalid, L. (2014). Efficient techniques for cooperative spectrum sensing in cognitive radio networks. PhD Thesis, Department of Electrical and Computer Engineering, Ryerson University, Toronto, ON, Canada, pp. 1–206.
19.
Zurück zum Zitat Wang, N., et al. (2013). Adaptive spectrum sensing algorithm under different primary user utilizations. IEEE Communications Letters, 17(9), 1838–1841.CrossRef Wang, N., et al. (2013). Adaptive spectrum sensing algorithm under different primary user utilizations. IEEE Communications Letters, 17(9), 1838–1841.CrossRef
20.
Zurück zum Zitat Mariani, A., et al. (2011). Effects of noise power estimation on energy detection for cognitive radio applications. IEEE Transactions on Communications, 59(12), 3410–3420.CrossRef Mariani, A., et al. (2011). Effects of noise power estimation on energy detection for cognitive radio applications. IEEE Transactions on Communications, 59(12), 3410–3420.CrossRef
21.
Zurück zum Zitat Ye, Z., et al. (2008). Energy detection using estimated noise variance for spectrum sensing in cognitive radio networks. In IEEE conference on wireless communications and networking conference (WCNC) (pp. 711–716). Ye, Z., et al. (2008). Energy detection using estimated noise variance for spectrum sensing in cognitive radio networks. In IEEE conference on wireless communications and networking conference (WCNC) (pp. 711–716).
22.
Zurück zum Zitat Cabric, D., et al. (2006). Experimental study of spectrum sensing based on energy detection and network cooperation. In Proceedings of international technology and policy for accessing spectrum. Cabric, D., et al. (2006). Experimental study of spectrum sensing based on energy detection and network cooperation. In Proceedings of international technology and policy for accessing spectrum.
23.
Zurück zum Zitat Moghimi, F., et al. (2009). Lp-norm spectrum sensing for cognitive radio networks impaired by non-gaussian noise. In Proceedings of IEEE conference, GLOBECOM (pp. 1–6). Moghimi, F., et al. (2009). Lp-norm spectrum sensing for cognitive radio networks impaired by non-gaussian noise. In Proceedings of IEEE conference, GLOBECOM (pp. 1–6).
24.
Zurück zum Zitat Ghasemi, A., & Sousa, E. S. (2007). Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions on Wireless Communications, 6(2), 649–658.CrossRef Ghasemi, A., & Sousa, E. S. (2007). Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions on Wireless Communications, 6(2), 649–658.CrossRef
25.
Zurück zum Zitat Musavian, L., & Aissa, S. (2007). Ergodic and outage capacities of spectrum-sharing systems in fading channels. In Proceedings of IEEE global telecommunications (GLOBECOM) Conference (pp. 3327–3331). Musavian, L., & Aissa, S. (2007). Ergodic and outage capacities of spectrum-sharing systems in fading channels. In Proceedings of IEEE global telecommunications (GLOBECOM) Conference (pp. 3327–3331).
26.
Zurück zum Zitat Peh, E. C. Y., et al. (2009). Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view. IEEE Transactions on Vehicular Technology, 58(9), 5294–5299.CrossRef Peh, E. C. Y., et al. (2009). Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view. IEEE Transactions on Vehicular Technology, 58(9), 5294–5299.CrossRef
27.
Zurück zum Zitat Verma, G., & Sahu, O. P. (2015). Throughput Enhancement to the cognitive radio networks under the precaution is better than the cure approach (PBC). In Proceedings of IEEE international conference on signal processing and communication engineering systems (SPACES), K.L. University (pp. 1–4). Verma, G., & Sahu, O. P. (2015). Throughput Enhancement to the cognitive radio networks under the precaution is better than the cure approach (PBC). In Proceedings of IEEE international conference on signal processing and communication engineering systems (SPACES), K.L. University (pp. 1–4).
28.
Zurück zum Zitat Verma, G., & Sahu, O. P. (2015). Throughput enhancement to the cognitive radio networks under the precaution based cooperation of the primary users. In Proceedings of IEEE international conference on signal processing, informatics, communication and energy systems (SPICES), NIT Calicut, Kerala (pp. 1–4). Verma, G., & Sahu, O. P. (2015). Throughput enhancement to the cognitive radio networks under the precaution based cooperation of the primary users. In Proceedings of IEEE international conference on signal processing, informatics, communication and energy systems (SPICES), NIT Calicut, Kerala (pp. 1–4).
29.
Zurück zum Zitat Zhang, W., et al. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(12), 5761–5766.CrossRef Zhang, W., et al. (2009). Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communications, 8(12), 5761–5766.CrossRef
30.
Zurück zum Zitat Huang, T., & Li, J. (2013). A weighted cooperative spectrum sensing scheme based on dynamic double energy thresholds in cognitive radio networks. In IEEE conference, global high tech congress on electronics (GHTCE) (pp. 201–204). Huang, T., & Li, J. (2013). A weighted cooperative spectrum sensing scheme based on dynamic double energy thresholds in cognitive radio networks. In IEEE conference, global high tech congress on electronics (GHTCE) (pp. 201–204).
31.
Zurück zum Zitat Sonnenschien, A., & Fishman, P. M. (1992). Radiometric detection of spread spectrum signals in noise of uncertain power. IEEE Transactions on Aerospace and Electronic Systems, 28(3), 654–660.CrossRef Sonnenschien, A., & Fishman, P. M. (1992). Radiometric detection of spread spectrum signals in noise of uncertain power. IEEE Transactions on Aerospace and Electronic Systems, 28(3), 654–660.CrossRef
32.
Zurück zum Zitat Werner, J., et al. (2013). Estimating the primary user location and transmit power in cognitive radio systems using extended kalman filters. In IEEE international conference on wireless on-demand network systems and services (WONS) (pp. 68–73). Werner, J., et al. (2013). Estimating the primary user location and transmit power in cognitive radio systems using extended kalman filters. In IEEE international conference on wireless on-demand network systems and services (WONS) (pp. 68–73).
33.
Zurück zum Zitat Radhi, N., et al. (2011). Estimate primary user localization using cognitive radio networks. In IEEE international conference on innovations in information technology (IIT) (pp. 381–385). Radhi, N., et al. (2011). Estimate primary user localization using cognitive radio networks. In IEEE international conference on innovations in information technology (IIT) (pp. 381–385).
34.
Zurück zum Zitat Xiao, L., et al. (2007). Sensor-assisted localization in cellular systems. IEEE Transactions on Wireless Communications, 6(12), 4244–4248.CrossRef Xiao, L., et al. (2007). Sensor-assisted localization in cellular systems. IEEE Transactions on Wireless Communications, 6(12), 4244–4248.CrossRef
35.
Zurück zum Zitat Wang, J., et al. (2010). Weighted centroid algorithm for estimating primary user location: Theoretical analysis and distributed implementation. pp. 1–25. arXiv:1011.2313. Wang, J., et al. (2010). Weighted centroid algorithm for estimating primary user location: Theoretical analysis and distributed implementation. pp. 1–25. arXiv:​1011.​2313.
36.
Zurück zum Zitat Lin, Y.-E., et al. (2013). On using interference-aware spectrum sensing for dynamic spectrum access in cognitive radio networks. IEEE Transactions on Mobile Computing, 12(3), 461–474.CrossRef Lin, Y.-E., et al. (2013). On using interference-aware spectrum sensing for dynamic spectrum access in cognitive radio networks. IEEE Transactions on Mobile Computing, 12(3), 461–474.CrossRef
37.
Zurück zum Zitat Wild, B., et al. (2005). Detecting primary receivers for cognitive radio applications. In IEEE symposium on new frontiers in dynamic spectrum access networks (DySPAN) (pp. 124–130). Wild, B., et al. (2005). Detecting primary receivers for cognitive radio applications. In IEEE symposium on new frontiers in dynamic spectrum access networks (DySPAN) (pp. 124–130).
Metadaten
Titel
Opportunistic Selection of Threshold in Cognitive Radio Networks
verfasst von
Gaurav Verma
O. P. Sahu
Publikationsdatum
08.08.2016
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2017
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-016-3573-5

Weitere Artikel der Ausgabe 2/2017

Wireless Personal Communications 2/2017 Zur Ausgabe