Skip to main content

2012 | OriginalPaper | Buchkapitel

Optical Properties of Quantum Dot Nano-composite Materials Studied by Solid-State Theory Calculations

verfasst von : Ying Fu, Hans Ågren

Erschienen in: Handbook of Computational Chemistry

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter reviews the fundamental concepts of excitons and excitonic polaritons and their extraordinary optical properties in quantum dot nano-composite materials. By starting with the optical excitation of an exciton in the nanostructure we show that the effective dielectric constant of the nanostructure becomes significantly modified due to the exciton generation and recombination, resulting in high positive and negative dielectric constants. We also discuss single exciton generation by multiple photons and multiple exciton generation by single photon. All these nonlinear optical properties of quantum dot nano-composite materials offer novel possibilities and are expected to have deep impact in nanophotonics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abrahams, E. (1954). Electron-electron scattering in Alkali metals. Physical Review, 95, 839–910.CrossRef Abrahams, E. (1954). Electron-electron scattering in Alkali metals. Physical Review, 95, 839–910.CrossRef
Zurück zum Zitat Allan, G., & Delerue, C. (2008). Influence of electronic structure and multiexciton spectral density on multiple-exciton generation in semiconductor nanocrystals: Tight-binding calculations. Physical Review B, 77, 125340(10). Allan, G., & Delerue, C. (2008). Influence of electronic structure and multiexciton spectral density on multiple-exciton generation in semiconductor nanocrystals: Tight-binding calculations. Physical Review B, 77, 125340(10).
Zurück zum Zitat Andreani, L. C., Gerace, D., & Agio, M. (2005). Exciton-polaritons and nanoscale cavities in photonic crystal slabs. Physica Status Solidi (B), 242, 2197–2209.CrossRef Andreani, L. C., Gerace, D., & Agio, M. (2005). Exciton-polaritons and nanoscale cavities in photonic crystal slabs. Physica Status Solidi (B), 242, 2197–2209.CrossRef
Zurück zum Zitat Birman, J. L., & Huong, N. Q. (2007). Wannier-Frenkel hybrid exciton in organic-semiconductor quantum dot heterostructures. Journal of Luminescence, 125, 196–200.CrossRef Birman, J. L., & Huong, N. Q. (2007). Wannier-Frenkel hybrid exciton in organic-semiconductor quantum dot heterostructures. Journal of Luminescence, 125, 196–200.CrossRef
Zurück zum Zitat Bratkovsky, A., Ponizovskaya, E., Wang, S.-Y., Holmström, P., Thylén, L., Fu, Y., & Ågren, H. (2008). A metal-wire/quantum-dot composite metamaterial with negative \(\epsilon \) and compensated optical loss. Applied Physics Letters, 93, 193106(3). Bratkovsky, A., Ponizovskaya, E., Wang, S.-Y., Holmström, P., Thylén, L., Fu, Y., & Ågren, H. (2008). A metal-wire/quantum-dot composite metamaterial with negative \(\epsilon \) and compensated optical loss. Applied Physics Letters, 93, 193106(3).
Zurück zum Zitat Cohen, R. W., Cody, G. D., Coutts, M. D., & Abeles, B. (1973). Optical properties of granular silver and gold films. Physical Review B, 8, 3689–3701.CrossRef Cohen, R. W., Cody, G. D., Coutts, M. D., & Abeles, B. (1973). Optical properties of granular silver and gold films. Physical Review B, 8, 3689–3701.CrossRef
Zurück zum Zitat Cohen-Tannoudji, C., Diu, B., & Laloe, F. (1991). Quantum mechanics (Vol. 2, p. 1046). New York: Wiley-Interscience. Cohen-Tannoudji, C., Diu, B., & Laloe, F. (1991). Quantum mechanics (Vol. 2, p. 1046). New York: Wiley-Interscience.
Zurück zum Zitat Derfus, A. M., Chen, A. A., Min, D.-H., Ruoslahti, E., & Bhatia, S. N. (2007). Targeted quantum dot conjugates for siRNA delivery. Bioconjugate Chemistry, 18, 1391–1396.CrossRef Derfus, A. M., Chen, A. A., Min, D.-H., Ruoslahti, E., & Bhatia, S. N. (2007). Targeted quantum dot conjugates for siRNA delivery. Bioconjugate Chemistry, 18, 1391–1396.CrossRef
Zurück zum Zitat Dimmock, J. O. (1967). Chapter 7 Introduction to the theory of exciton states in semiconductors. In R. K. Willardson & A. C. Beer (Eds.), Semiconductors and Semimetals (Vol. 3, pp. 259–319). New York: Academic. Dimmock, J. O. (1967). Chapter 7 Introduction to the theory of exciton states in semiconductors. In R. K. Willardson & A. C. Beer (Eds.), Semiconductors and Semimetals (Vol. 3, pp. 259–319). New York: Academic.
Zurück zum Zitat Franceschetti, A., An, J. M., & Zunger, A. (2006). Impact ionization can explain carrier multiplication in PbSe quantum dots. Nano Letters, 6, 2191–2195.CrossRef Franceschetti, A., An, J. M., & Zunger, A. (2006). Impact ionization can explain carrier multiplication in PbSe quantum dots. Nano Letters, 6, 2191–2195.CrossRef
Zurück zum Zitat Fu, Y., & Willander, M. (1999). Chapter 1 Elemental and compound semiconductors. In Physicalmodel of semiconductor quantum devices (pp. 1–22). Boston: Kluwer.CrossRef Fu, Y., & Willander, M. (1999). Chapter 1 Elemental and compound semiconductors. In Physicalmodel of semiconductor quantum devices (pp. 1–22). Boston: Kluwer.CrossRef
Zurück zum Zitat Fu, Y., Willander, M., Ivchenko, E. L., & Kiselev, A. A. (1997). Four-wave mixing in microcavities with embedded quantum wells. Physical Review, B55, 9872–9879.CrossRef Fu, Y., Willander, M., Ivchenko, E. L., & Kiselev, A. A. (1997). Four-wave mixing in microcavities with embedded quantum wells. Physical Review, B55, 9872–9879.CrossRef
Zurück zum Zitat Fu, Y., Willander, M., & Ivchenko, E. L. (2000). Photonic dispersions of semiconductor-quantum-dot-array-based photonic crystals in primitive and face-centered cubic lattices. Superlattices and Microstructures, 27, 255–264.CrossRef Fu, Y., Willander, M., & Ivchenko, E. L. (2000). Photonic dispersions of semiconductor-quantum-dot-array-based photonic crystals in primitive and face-centered cubic lattices. Superlattices and Microstructures, 27, 255–264.CrossRef
Zurück zum Zitat Fu, Y., Willander, M., & Xu, Q.-X. (2006a). Chapter 5 Quantum effects and nanofabrications in scaling metal-oxide-semiconductor devices. In A. A. Balandin & K. L. Wang (Eds.), Handbook of semiconductor nanostructures and nanodevices (Vol. 5, pp. 229–256). Los Angeles: American Scientific Publishers. Fu, Y., Willander, M., & Xu, Q.-X. (2006a). Chapter 5 Quantum effects and nanofabrications in scaling metal-oxide-semiconductor devices. In A. A. Balandin & K. L. Wang (Eds.), Handbook of semiconductor nanostructures and nanodevices (Vol. 5, pp. 229–256). Los Angeles: American Scientific Publishers.
Zurück zum Zitat Fu, Y., Berglind, E., Thylén, L., & Ågren, H. (2006b). Optical transmission and waveguiding by excitonic quantum dot lattices. Journal of the Optical Society of America B, 23, 2441–2447.CrossRef Fu, Y., Berglind, E., Thylén, L., & Ågren, H. (2006b). Optical transmission and waveguiding by excitonic quantum dot lattices. Journal of the Optical Society of America B, 23, 2441–2447.CrossRef
Zurück zum Zitat Fu, Y., Han, T.-T., Luo, Y., & Ågren, H. (2006c). Multi-photon excitation of quantum dots by ultra-short and ultra-intense laser pulse. Applied Physics Letters, 88, 221114(3). Fu, Y., Han, T.-T., Luo, Y., & Ågren, H. (2006c). Multi-photon excitation of quantum dots by ultra-short and ultra-intense laser pulse. Applied Physics Letters, 88, 221114(3).
Zurück zum Zitat Fu, Y., Han, T.-T., Ågren, H., Lin, L., Chen, P., Liu, Y., Tang, G.-Q., Wu, J., Yue, Y., & Dai, N. (2007). Design of semiconductor CdSe-core ZnS/CdS-multishell quantum dots for multiphoton applications. Applied Physics Letters, 90, 173102(3). Fu, Y., Han, T.-T., Ågren, H., Lin, L., Chen, P., Liu, Y., Tang, G.-Q., Wu, J., Yue, Y., & Dai, N. (2007). Design of semiconductor CdSe-core ZnS/CdS-multishell quantum dots for multiphoton applications. Applied Physics Letters, 90, 173102(3).
Zurück zum Zitat Fu, Y., Thylén, L., & Ågren, H. (2008). A lossless negative dielectric constant from quantum dot exciton polaritons. Nano Letters, 8, 1551–1555.CrossRef Fu, Y., Thylén, L., & Ågren, H. (2008). A lossless negative dielectric constant from quantum dot exciton polaritons. Nano Letters, 8, 1551–1555.CrossRef
Zurück zum Zitat Fu, Y., Ågren, H., Kowalewski, J. M., Brismar, H., Wu, J., Yue, Y., Dai, N., & Thylén, L. (2009). Radiative and nonradiative recombination of photoexcited excitons in multi-shell-coated CdSe/CdS/ZnS quantum dots. Europhysics Letters, 86, 37003(6). Fu, Y., Ågren, H., Kowalewski, J. M., Brismar, H., Wu, J., Yue, Y., Dai, N., & Thylén, L. (2009). Radiative and nonradiative recombination of photoexcited excitons in multi-shell-coated CdSe/CdS/ZnS quantum dots. Europhysics Letters, 86, 37003(6).
Zurück zum Zitat Fu, Y., Zhou, Y.-H., Su, H., Boey, F. Y. C., & Ågren, H. (2010). Impact ionization and Auger recombination rates in semiconductor quantum dots. Journal of Physical Chemistry C, 114, 3743–3747.CrossRef Fu, Y., Zhou, Y.-H., Su, H., Boey, F. Y. C., & Ågren, H. (2010). Impact ionization and Auger recombination rates in semiconductor quantum dots. Journal of Physical Chemistry C, 114, 3743–3747.CrossRef
Zurück zum Zitat Gasiorowicz, S. (1996). Quantum physics (p. 178). New York: Wiley. Gasiorowicz, S. (1996). Quantum physics (p. 178). New York: Wiley.
Zurück zum Zitat Gittleman, J. I., & Abeles, B. (1977). Comparison of the effective medium and the Maxwell-Garnett predictions for the dielectric constants of granular metals. Physical Review B, 15, 3273–3275.CrossRef Gittleman, J. I., & Abeles, B. (1977). Comparison of the effective medium and the Maxwell-Garnett predictions for the dielectric constants of granular metals. Physical Review B, 15, 3273–3275.CrossRef
Zurück zum Zitat Hanna, M. C., Ellingson, R. J., Beard, M., Yu, P., Micic, O.I., & Nozik, A.J. (2004, October 25–28). Quantum dot solar cells: High efficiency through multiple exciton generation. 2004 DOE Solar Energy Technologies Program Review Meeting, Denver, Colorado. Hanna, M. C., Ellingson, R. J., Beard, M., Yu, P., Micic, O.I., & Nozik, A.J. (2004, October 25–28). Quantum dot solar cells: High efficiency through multiple exciton generation. 2004 DOE Solar Energy Technologies Program Review Meeting, Denver, Colorado.
Zurück zum Zitat Helmchen, F., Svododa, K., Denk, W., Kleinfeld, D., & Tank, D. W. (1996). In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nature Neuroscience, 2, 989–996.CrossRef Helmchen, F., Svododa, K., Denk, W., Kleinfeld, D., & Tank, D. W. (1996). In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nature Neuroscience, 2, 989–996.CrossRef
Zurück zum Zitat Huxter, V. M., & Scholes, G. D. (2006). Nonlinear optical approach to multiexciton relaxation dynamics in quantum dots. Journal of Chemical Physics, 125, 144716–144712.CrossRef Huxter, V. M., & Scholes, G. D. (2006). Nonlinear optical approach to multiexciton relaxation dynamics in quantum dots. Journal of Chemical Physics, 125, 144716–144712.CrossRef
Zurück zum Zitat Ivchenko, E. L., Fu, Y., & Willander, M. (2000). Exciton polaritons in quantum-dot photonic crystals. Physics of the Solid State, 42, 1756–1765.CrossRef Ivchenko, E. L., Fu, Y., & Willander, M. (2000). Exciton polaritons in quantum-dot photonic crystals. Physics of the Solid State, 42, 1756–1765.CrossRef
Zurück zum Zitat Jiang, J., Gao, B., Han, T.-T., & Fu, Y. (2009). Ab initio study of energy band structures of GaAs nanoclusters. Applied Physics Letters, 94, 092110(3). Jiang, J., Gao, B., Han, T.-T., & Fu, Y. (2009). Ab initio study of energy band structures of GaAs nanoclusters. Applied Physics Letters, 94, 092110(3).
Zurück zum Zitat Kane, E. O. (1957). Band structure of indium antimonide. Journal of Physics and Chemistry of Solids, 1, 249.CrossRef Kane, E. O. (1957). Band structure of indium antimonide. Journal of Physics and Chemistry of Solids, 1, 249.CrossRef
Zurück zum Zitat Kavokin, A. (2007). Exciton-polaritons in microcavities: Present and future. Applied Physics A, 89, 241–246.CrossRef Kavokin, A. (2007). Exciton-polaritons in microcavities: Present and future. Applied Physics A, 89, 241–246.CrossRef
Zurück zum Zitat Kim, S. J., Kim, W. J., Sahoo, Y., Cartwright, A. N., & Prasad, P. N. (2008). Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor. Applied Physics Letters, 92, 31107(3). Kim, S. J., Kim, W. J., Sahoo, Y., Cartwright, A. N., & Prasad, P. N. (2008). Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor. Applied Physics Letters, 92, 31107(3).
Zurück zum Zitat Lami, J.-F., Gilliot, P., & Hirlimann, C. (1996). Observation of interband two-photon absorption saturation in CdS. Physical Review Letters, 77, 1632–1635.CrossRef Lami, J.-F., Gilliot, P., & Hirlimann, C. (1996). Observation of interband two-photon absorption saturation in CdS. Physical Review Letters, 77, 1632–1635.CrossRef
Zurück zum Zitat Landau, L. D., & Lifshitz, E. M. (1965). Quantum mechanics (2nd ed., p. 129). Oxford: Pergamon Press. Landau, L. D., & Lifshitz, E. M. (1965). Quantum mechanics (2nd ed., p. 129). Oxford: Pergamon Press.
Zurück zum Zitat Landsberg, P. T. (1991). Recombination in semiconductors. London: Cambridge University Press. Landsberg, P. T. (1991). Recombination in semiconductors. London: Cambridge University Press.
Zurück zum Zitat Landsberg, P. T., & Adams, M. J. (1973). Theory of donor-acceptor radiative and Auger recombination in simple semiconductors. Proceedings of the Royal Society of London A, 334, 523–539.CrossRef Landsberg, P. T., & Adams, M. J. (1973). Theory of donor-acceptor radiative and Auger recombination in simple semiconductors. Proceedings of the Royal Society of London A, 334, 523–539.CrossRef
Zurück zum Zitat Madelung, O. (Ed.). (1991). Semiconductors group IV elements and III-V compounds. Berlin: Springer. Madelung, O. (Ed.). (1991). Semiconductors group IV elements and III-V compounds. Berlin: Springer.
Zurück zum Zitat Madelung, O. (Ed.). (1992). Data in science and technology: Semiconductors other than group IV elements and III-V compounds. Boston: Springer. Madelung, O. (Ed.). (1992). Data in science and technology: Semiconductors other than group IV elements and III-V compounds. Boston: Springer.
Zurück zum Zitat Maxwell-Garnett, J. C. (1906). Colours in metal glasses, in metallic films, and in metallic solutions. II. Philosophical Transactions of the Royal Society of London, 205, 237–288. Maxwell-Garnett, J. C. (1906). Colours in metal glasses, in metallic films, and in metallic solutions. II. Philosophical Transactions of the Royal Society of London, 205, 237–288.
Zurück zum Zitat Mayer, M. G. (1931). Elementary processes with two quantum jumps. Annalen Der Physik (Leipzig), 9, 273–294.CrossRef Mayer, M. G. (1931). Elementary processes with two quantum jumps. Annalen Der Physik (Leipzig), 9, 273–294.CrossRef
Zurück zum Zitat Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 4, 435–446.CrossRef Medintz, I. L., Uyeda, H. T., Goldman, E. R., & Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials, 4, 435–446.CrossRef
Zurück zum Zitat Miller, D. A. B., Chemla, D. S., Eilenberg, D. J., Smith, P. W., Gossard, A. C., & Tsang, W. T. (1982). Large room-temperature optical nonlinearity in GaAs/Ga\({}_{1-x}\)Al\({}_{x}\)As multiple quantum well structures. Applied Physics Letters, 41, 679–681.CrossRef Miller, D. A. B., Chemla, D. S., Eilenberg, D. J., Smith, P. W., Gossard, A. C., & Tsang, W. T. (1982). Large room-temperature optical nonlinearity in GaAs/Ga\({}_{1-x}\)Al\({}_{x}\)As multiple quantum well structures. Applied Physics Letters, 41, 679–681.CrossRef
Zurück zum Zitat Molnár, M., Fu, Y., Friberg, P., & Chen, Y. (2010). Optical characterization of colloidal CdSe quantum dots in endothelial progenitor cells. Journal of Nanobiotechnology, 8, 2. doi:10.1186/1477-3155-8-2.CrossRef Molnár, M., Fu, Y., Friberg, P., & Chen, Y. (2010). Optical characterization of colloidal CdSe quantum dots in endothelial progenitor cells. Journal of Nanobiotechnology, 8, 2. doi:10.1186/1477-3155-8-2.CrossRef
Zurück zum Zitat Nozik, A. J. (2002). Quantum dot solar cells. Physica E: Low-dimensional Systems and Nanostructures, 14, 115–120.CrossRef Nozik, A. J. (2002). Quantum dot solar cells. Physica E: Low-dimensional Systems and Nanostructures, 14, 115–120.CrossRef
Zurück zum Zitat Rabani, E., & Baer, R., (2008). Distribution of multiexciton generation rates in CdSe and InAs nanocrystals. Nano Letters, 8, 4488–4492.CrossRef Rabani, E., & Baer, R., (2008). Distribution of multiexciton generation rates in CdSe and InAs nanocrystals. Nano Letters, 8, 4488–4492.CrossRef
Zurück zum Zitat Ridley, B. K. (1988). Quantum processes in semiconductors (pp. 269–278). Oxford: Clarendon Press. Ridley, B. K. (1988). Quantum processes in semiconductors (pp. 269–278). Oxford: Clarendon Press.
Zurück zum Zitat Rodina, P., Ebert, U., Hundsdorfer, W., & Grekhov, I. (2002). Tunneling-assisted impact ionization fronts in semiconductors. Journal of Applied Physics, 92, 958–964.CrossRef Rodina, P., Ebert, U., Hundsdorfer, W., & Grekhov, I. (2002). Tunneling-assisted impact ionization fronts in semiconductors. Journal of Applied Physics, 92, 958–964.CrossRef
Zurück zum Zitat Schaller, R. D., & Klimov, V. I. (2004). High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Physical Review Letters, 92, 186601(4). Schaller, R. D., & Klimov, V. I. (2004). High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Physical Review Letters, 92, 186601(4).
Zurück zum Zitat Schaller, R. D., Agranovich, V. M., & Klimov, V. I. (2005). Mechanism for high-efficiency carrier multiplication in semiconductor nanocrystals: Direct photogeneration of multiexcitons via virtual single-exciton states. Nature Physics, 1, 189–194.CrossRef Schaller, R. D., Agranovich, V. M., & Klimov, V. I. (2005). Mechanism for high-efficiency carrier multiplication in semiconductor nanocrystals: Direct photogeneration of multiexcitons via virtual single-exciton states. Nature Physics, 1, 189–194.CrossRef
Zurück zum Zitat Schmidt, M. E., Blanton, S. A., Hines, M. A., & Guyot-Sionnest, P. (1996). Size-dependent two-photon excitation spectroscopy of CdSe nanocrystals. Physical Review B, 53, 12629–12632.CrossRef Schmidt, M. E., Blanton, S. A., Hines, M. A., & Guyot-Sionnest, P. (1996). Size-dependent two-photon excitation spectroscopy of CdSe nanocrystals. Physical Review B, 53, 12629–12632.CrossRef
Zurück zum Zitat Scholes, G. D., & Rumbles, G. (2006). Excitons in nanoscale systems. Nature Materials, 5, 683–696.CrossRef Scholes, G. D., & Rumbles, G. (2006). Excitons in nanoscale systems. Nature Materials, 5, 683–696.CrossRef
Zurück zum Zitat Sturge, M. D., & Rashba, E. I. (Eds.). (1982). Excitons. Amsterdam: North-Holland. Sturge, M. D., & Rashba, E. I. (Eds.). (1982). Excitons. Amsterdam: North-Holland.
Zurück zum Zitat Suffczyński, J., Kazimierczuk, T., Goryca, M., Piechal, B., Trajnerowicz, A., Kowalik, K., Kossacki, P., Golnik, A., Korona, K. P., Nawrocki, M., & Gaj, J. A. (2006). Excitation mechanisms of individual CdTe/ZnTe quantum dots studied by photon correlation spectroscopy. Physical Review B, 74, 085319(7). Suffczyński, J., Kazimierczuk, T., Goryca, M., Piechal, B., Trajnerowicz, A., Kowalik, K., Kossacki, P., Golnik, A., Korona, K. P., Nawrocki, M., & Gaj, J. A. (2006). Excitation mechanisms of individual CdTe/ZnTe quantum dots studied by photon correlation spectroscopy. Physical Review B, 74, 085319(7).
Zurück zum Zitat Sun, H. D., Makino, T., Segawa, Y., Kawasaki, M., Ohtomo, A., Tamura, K., & Koinuma, H. (2002). Enhancement of exciton binding energies in ZnO/ZnMgO multiquantum wells. Journal of Applied Physics, 91, 1993–1997.CrossRef Sun, H. D., Makino, T., Segawa, Y., Kawasaki, M., Ohtomo, A., Tamura, K., & Koinuma, H. (2002). Enhancement of exciton binding energies in ZnO/ZnMgO multiquantum wells. Journal of Applied Physics, 91, 1993–1997.CrossRef
Zurück zum Zitat Takenaka, N., Inoue, M., & Inuishi, Y. (1979). Influence of inter-carrier scattering on hot electron distribution function in GaAs. Journal of the Physical Society of Japan, 47, 861–868.CrossRef Takenaka, N., Inoue, M., & Inuishi, Y. (1979). Influence of inter-carrier scattering on hot electron distribution function in GaAs. Journal of the Physical Society of Japan, 47, 861–868.CrossRef
Zurück zum Zitat Thylén, L., He, S., Wosinski, L., & Dai, D. (2006). The Moore’s Law for photonic integrated circuits. Journal of Zhejiang University Science A, 7, 1961–1967.CrossRef Thylén, L., He, S., Wosinski, L., & Dai, D. (2006). The Moore’s Law for photonic integrated circuits. Journal of Zhejiang University Science A, 7, 1961–1967.CrossRef
Zurück zum Zitat Trinh, M. T., Houtepen, A. J., Schins, J. M., Hanrath, T., Piris, J., Knulst, W., Goossens, A. P. L. M., & Siebbeles, L. D. A. (2008). In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. Nano Letters, 8, 1713–1718.CrossRef Trinh, M. T., Houtepen, A. J., Schins, J. M., Hanrath, T., Piris, J., Knulst, W., Goossens, A. P. L. M., & Siebbeles, L. D. A. (2008). In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. Nano Letters, 8, 1713–1718.CrossRef
Zurück zum Zitat Vashist, S. K., Tewari, R., Bajpai, R. P., Bharadwaj, L. M., & Raiteri, R. (2006). Review of quantum dot technologies for cancer detection and treatment. Azojono Journal of Nanotechnology Online, 2, 1–14, 10.2240/azojono0113. Vashist, S. K., Tewari, R., Bajpai, R. P., Bharadwaj, L. M., & Raiteri, R. (2006). Review of quantum dot technologies for cancer detection and treatment. Azojono Journal of Nanotechnology Online, 2, 1–14, 10.2240/azojono0113.
Zurück zum Zitat Vlasov, Y. A., Astratov, V. N., Karimov, O. Z., Kaplyanskii, A. A., Bogomolov, V. N & Prokofiev, A. V. (1997). Existence of a photonic pseudogap for visible light in synthetic opals. Physical Review, B55, R13357–13360.CrossRef Vlasov, Y. A., Astratov, V. N., Karimov, O. Z., Kaplyanskii, A. A., Bogomolov, V. N & Prokofiev, A. V. (1997). Existence of a photonic pseudogap for visible light in synthetic opals. Physical Review, B55, R13357–13360.CrossRef
Zurück zum Zitat Vurgaftman, I., Meyer, J. R., & Ram-Mohan, L. R. (2001). Band parameters for III-V compound semiconductors and their alloys. Journal Of Applied Physics, 89, 5815–5875.CrossRef Vurgaftman, I., Meyer, J. R., & Ram-Mohan, L. R. (2001). Band parameters for III-V compound semiconductors and their alloys. Journal Of Applied Physics, 89, 5815–5875.CrossRef
Zurück zum Zitat Weisbuch, C., Benisty H., & Houdré, R. (2000). Overview of fundamentals and applications of electrons, excitons and photons in confined structures. Journal of Luminescence, 85, 271–293.CrossRef Weisbuch, C., Benisty H., & Houdré, R. (2000). Overview of fundamentals and applications of electrons, excitons and photons in confined structures. Journal of Luminescence, 85, 271–293.CrossRef
Zurück zum Zitat Wherrett, B. S. (1984). Scaling rules for multiphoton interband absorption in semiconductors. Journal of the Optical Society of America B-Optical Physics, 1, 67–72.CrossRef Wherrett, B. S. (1984). Scaling rules for multiphoton interband absorption in semiconductors. Journal of the Optical Society of America B-Optical Physics, 1, 67–72.CrossRef
Zurück zum Zitat Xu, W.-L., Fu, Y., Willander, M., & Shen, S. C. (1994). Theory of normal incident absorption for the intersubband transition in n-type indirect-gap semiconductor quantum wells. Physical Review B, 49, 13760–13766.CrossRef Xu, W.-L., Fu, Y., Willander, M., & Shen, S. C. (1994). Theory of normal incident absorption for the intersubband transition in n-type indirect-gap semiconductor quantum wells. Physical Review B, 49, 13760–13766.CrossRef
Zurück zum Zitat Yannopapas, V. (2007). Artificial magnetism and negative refractive index in three-dimensional metamaterials of spherical particles at near-infrared and visible frequencies. Applied Physics A, 87, 259–264.CrossRef Yannopapas, V. (2007). Artificial magnetism and negative refractive index in three-dimensional metamaterials of spherical particles at near-infrared and visible frequencies. Applied Physics A, 87, 259–264.CrossRef
Zurück zum Zitat Yannopapas, V. (2008). Subwavelength imaging of light by arrays of metal-coated semiconductor nanoparticles: A theoretical study. Journal of Physics: Condensed Matter, 20, 255201–255208. Yannopapas, V. (2008). Subwavelength imaging of light by arrays of metal-coated semiconductor nanoparticles: A theoretical study. Journal of Physics: Condensed Matter, 20, 255201–255208.
Zurück zum Zitat Yatsui, T., Sangu, S., Kawazoe, T., Ohtsu, M., An, S. J., Yoo, J., & Yi, G.-C. (2007). Nanophotonic switch using ZnO nanorod double-quantum-well structures. Applied Physics Letters, 90, 223110(3). Yatsui, T., Sangu, S., Kawazoe, T., Ohtsu, M., An, S. J., Yoo, J., & Yi, G.-C. (2007). Nanophotonic switch using ZnO nanorod double-quantum-well structures. Applied Physics Letters, 90, 223110(3).
Zurück zum Zitat Yatsui, T., Yib, G.-C., & Ohtsu, M. (2008). Progress in developing nanophotonic integrated circuits. Proceedings of SPIE, 7007, 700703(8). Yatsui, T., Yib, G.-C., & Ohtsu, M. (2008). Progress in developing nanophotonic integrated circuits. Proceedings of SPIE, 7007, 700703(8).
Zurück zum Zitat Yokoyama, H., Guo, H., Yoda, T., Takashima, K., Sato, K.-I., Taniguchi, H., & Ito, H. (2006). Two-photon bioimaging with picosecond optical pulses from a semiconductor laser. Optics Express, 14, 3467–3471.CrossRef Yokoyama, H., Guo, H., Yoda, T., Takashima, K., Sato, K.-I., Taniguchi, H., & Ito, H. (2006). Two-photon bioimaging with picosecond optical pulses from a semiconductor laser. Optics Express, 14, 3467–3471.CrossRef
Zurück zum Zitat Zamfirescu, M., Kavokin, A., Gil., B, Malpuech, G., & Kaliteevski, M. (2002). ZnO as a material mostly adapted for the realization of room-temperature polariton lasers. Physical Review B, 65, 161205(4). Zamfirescu, M., Kavokin, A., Gil., B, Malpuech, G., & Kaliteevski, M. (2002). ZnO as a material mostly adapted for the realization of room-temperature polariton lasers. Physical Review B, 65, 161205(4).
Zurück zum Zitat Zeng, Y., Fu, Y., Chen, X., Lu, W., & Ågren, H. (2006a). Complete band gaps in three-dimensional quantum-dot photonic crystals. Physical Review B, 74, 115325(5). Zeng, Y., Fu, Y., Chen, X., Lu, W., & Ågren, H. (2006a). Complete band gaps in three-dimensional quantum-dot photonic crystals. Physical Review B, 74, 115325(5).
Zurück zum Zitat Zeng, Y., Chen, X.-S., Lu, W., Fu, Y. (2006b). Exciton polaritons of nano-spherical-particle photonic crystals in compound lattices. The European Physical Journal B, 49, 313–318.CrossRef Zeng, Y., Chen, X.-S., Lu, W., Fu, Y. (2006b). Exciton polaritons of nano-spherical-particle photonic crystals in compound lattices. The European Physical Journal B, 49, 313–318.CrossRef
Zurück zum Zitat Zia, R., Schuller, J. A., Chandran, A., & Brongersma, M. L. (2006). Plasmonics: The next chip-scale technology. Materials Today, 9, 20.CrossRef Zia, R., Schuller, J. A., Chandran, A., & Brongersma, M. L. (2006). Plasmonics: The next chip-scale technology. Materials Today, 9, 20.CrossRef
Metadaten
Titel
Optical Properties of Quantum Dot Nano-composite Materials Studied by Solid-State Theory Calculations
verfasst von
Ying Fu
Hans Ågren
Copyright-Jahr
2012
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0711-5_23

Premium Partner