Skip to main content
Erschienen in: Electrical Engineering 4/2020

08.07.2020 | Original Paper

Optimal design procedure of a high-torque-density dual-stator consequent-pole Vernier PM machine

verfasst von: Mozaffar Vali, Taher Niknam, Hamed Gorginpour, Bahman Bahmani-Firouzi

Erschienen in: Electrical Engineering | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It can be concluded from the results of the previously published studies that the dual-stator consequent-pole Vernier PM machine introduces several advantages including higher torque per PM volume density, lower cogging torque, improved efficiency and simpler and more robust structure in comparison with the other presented structures. However, the optimal design procedure of the machine is not established yet. The importance of this issue is because of different geometry than conventional radial flux machines, unbalanced magnetic forces and mechanical and thermal limitations. In this paper, design variables are selected based on sensitivity analyses using FE method. Then, the objective function is defined as maximizing torque, efficiency and power factor and minimizing cogging torque. Several design constrained are imposed on the geometry dimensions, current densities and magnetic flux densities in different regions and mechanical forces. Magnetic equivalent circuit model is implemented for predicting the machine performance by varying the design parameters in each iteration of population-based optimization algorithm. The results of an optimum designed 10 kW machine with 2 kNm torque for in-wheel electric vehicle application are verified using 3D FE method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gorginpour H (2019) Dual-stator consequent-pole Vernier PM motor with improved power factor. IET Electr Power Appl 13(5):652–661CrossRef Gorginpour H (2019) Dual-stator consequent-pole Vernier PM motor with improved power factor. IET Electr Power Appl 13(5):652–661CrossRef
2.
Zurück zum Zitat Li D, Qu R, Lipo TA (2014) High-power-factor vernier permanent-magnet machines. IEEE Trans Ind Appl 50(6):3664–3674CrossRef Li D, Qu R, Lipo TA (2014) High-power-factor vernier permanent-magnet machines. IEEE Trans Ind Appl 50(6):3664–3674CrossRef
3.
Zurück zum Zitat Du ZS, Lipo TA (2017) torque performance comparison between a ferrite magnet Vernier motor and an industrial interior permanent magnet machine. IEEE Trans Ind Appl 53(3):2088–2097CrossRef Du ZS, Lipo TA (2017) torque performance comparison between a ferrite magnet Vernier motor and an industrial interior permanent magnet machine. IEEE Trans Ind Appl 53(3):2088–2097CrossRef
4.
Zurück zum Zitat Wu YC, Chen YT (2015) Mitigation of cogging torque for brushless interior permanent-magnet motors. Sci Iran 22(6):2163–2169 Wu YC, Chen YT (2015) Mitigation of cogging torque for brushless interior permanent-magnet motors. Sci Iran 22(6):2163–2169
5.
Zurück zum Zitat Gorginpour H (2020) Design modifications for improving modulation flux capability of consequent-pole Vernier-PM machine in comparison to conventional Vernier-PM machines. Sci Iran (in press) Gorginpour H (2020) Design modifications for improving modulation flux capability of consequent-pole Vernier-PM machine in comparison to conventional Vernier-PM machines. Sci Iran (in press)
6.
Zurück zum Zitat Kim B, Lipo TA (2014) Operation and design principles of a PM Vernier motor. IEEE Trans Ind Appl 50(6):3656–3663CrossRef Kim B, Lipo TA (2014) Operation and design principles of a PM Vernier motor. IEEE Trans Ind Appl 50(6):3656–3663CrossRef
7.
Zurück zum Zitat Li D, Qu R, Li J, Xiao L, Wu L, Xu W (2016) Analysis of torque capability and quality in Vernier permanent-magnet machines. IEEE Trans Ind Appl 52(1):125–135CrossRef Li D, Qu R, Li J, Xiao L, Wu L, Xu W (2016) Analysis of torque capability and quality in Vernier permanent-magnet machines. IEEE Trans Ind Appl 52(1):125–135CrossRef
8.
Zurück zum Zitat Zhao W, Ma A, Ji J, Chen X, Yao T (2020) Multiobjective optimization of a double-side linear Vernier PM motor using response surface method and differential evolution. IEEE Trans Ind Electron 67(1):80–90CrossRef Zhao W, Ma A, Ji J, Chen X, Yao T (2020) Multiobjective optimization of a double-side linear Vernier PM motor using response surface method and differential evolution. IEEE Trans Ind Electron 67(1):80–90CrossRef
9.
Zurück zum Zitat Lin Q, Niu S, Fu WN (2020) Design and optimization of a dual-permanent-magnet Vernier machine with a novel optimization model. IEEE Trans Magn 56(3):1–5CrossRef Lin Q, Niu S, Fu WN (2020) Design and optimization of a dual-permanent-magnet Vernier machine with a novel optimization model. IEEE Trans Magn 56(3):1–5CrossRef
10.
Zurück zum Zitat Kim B (2019) Design method of a direct-drive permanent magnet Vernier generator for a wind turbine system. IEEE Trans Ind Appl 55(5):4665–4675CrossRef Kim B (2019) Design method of a direct-drive permanent magnet Vernier generator for a wind turbine system. IEEE Trans Ind Appl 55(5):4665–4675CrossRef
11.
Zurück zum Zitat Zhang R, Li J, Qu R, Li D (2018) Analysis and design of triple-rotor axial-flux spoke-array Vernier permanent magnet machines. IEEE Trans Ind Appl 54(1):244–253CrossRef Zhang R, Li J, Qu R, Li D (2018) Analysis and design of triple-rotor axial-flux spoke-array Vernier permanent magnet machines. IEEE Trans Ind Appl 54(1):244–253CrossRef
12.
Zurück zum Zitat Xu L, Zhao W, Liu G, Song C (2019) Design optimization of a spoke-type permanent-magnet Vernier machine for torque density and power factor improvement. IEEE Trans Veh Technol 68(4):3446–3456CrossRef Xu L, Zhao W, Liu G, Song C (2019) Design optimization of a spoke-type permanent-magnet Vernier machine for torque density and power factor improvement. IEEE Trans Veh Technol 68(4):3446–3456CrossRef
13.
Zurück zum Zitat Du S, Lipo TA (2019) Design of an improved dual-stator ferrite magnet vernier machine to replace an industrial rare-earth IPM machine. IEEE Trans Energy Convers 34(4):2062–2069CrossRef Du S, Lipo TA (2019) Design of an improved dual-stator ferrite magnet vernier machine to replace an industrial rare-earth IPM machine. IEEE Trans Energy Convers 34(4):2062–2069CrossRef
14.
Zurück zum Zitat Liu W, Lipo TA (2018) Analysis of consequent pole spoke type vernier permanent magnet machine with alternating flux barrier design. IEEE Trans Ind Appl 54(6):5918–5929CrossRef Liu W, Lipo TA (2018) Analysis of consequent pole spoke type vernier permanent magnet machine with alternating flux barrier design. IEEE Trans Ind Appl 54(6):5918–5929CrossRef
15.
Zurück zum Zitat Zhao W, Sun X, Ji J, Liu G (2016) Design and analysis of new Vernier permanent-magnet machine with improved torque capability. IEEE Trans Appl Supercond 26(4):1–5 Zhao W, Sun X, Ji J, Liu G (2016) Design and analysis of new Vernier permanent-magnet machine with improved torque capability. IEEE Trans Appl Supercond 26(4):1–5
16.
Zurück zum Zitat Zhao X, Niu S, Fu W (2019) Torque component quantification and design guideline for dual permanent magnet Vernier machine. IEEE Trans Magn 55(6):1–5 Zhao X, Niu S, Fu W (2019) Torque component quantification and design guideline for dual permanent magnet Vernier machine. IEEE Trans Magn 55(6):1–5
17.
Zurück zum Zitat Gorginpour H (2020) Analysis and design considerations of an axial-flux dual-rotor consequent-pole Vernier-PM machine for direct-drive energy conversion systems. IET Renew Power Gener 14(2):211–221CrossRef Gorginpour H (2020) Analysis and design considerations of an axial-flux dual-rotor consequent-pole Vernier-PM machine for direct-drive energy conversion systems. IET Renew Power Gener 14(2):211–221CrossRef
18.
Zurück zum Zitat Kim B, Lipo TA (2016) Analysis of a PM Vernier motor with spoke structure. IEEE Trans Ind Appl 52(1):217–225CrossRef Kim B, Lipo TA (2016) Analysis of a PM Vernier motor with spoke structure. IEEE Trans Ind Appl 52(1):217–225CrossRef
19.
Zurück zum Zitat Ho SL, Niu S, Fu WN (2011) Design and comparison of Vernier permanent magnet machines. IEEE Trans Magn 47(10):3280–3283CrossRef Ho SL, Niu S, Fu WN (2011) Design and comparison of Vernier permanent magnet machines. IEEE Trans Magn 47(10):3280–3283CrossRef
20.
Zurück zum Zitat Yang Y, Liu G, Yang X, Wang X (2018) Analytical electromagnetic performance calculation of Vernier hybrid permanent magnet machine. IEEE Trans Magn 54:1–2CrossRef Yang Y, Liu G, Yang X, Wang X (2018) Analytical electromagnetic performance calculation of Vernier hybrid permanent magnet machine. IEEE Trans Magn 54:1–2CrossRef
21.
Zurück zum Zitat Kim B (2017) Design of a PM vernier machine with consideration for modulation flux and comparison with conventional PM motors. Energies 10(11):1–12 Kim B (2017) Design of a PM vernier machine with consideration for modulation flux and comparison with conventional PM motors. Energies 10(11):1–12
22.
Zurück zum Zitat Okada K, Niguchi N, Hirata K (2013) Analysis of a Vernier motor with concentrated windings. IEEE Trans Magn 49(5):2241–2244CrossRef Okada K, Niguchi N, Hirata K (2013) Analysis of a Vernier motor with concentrated windings. IEEE Trans Magn 49(5):2241–2244CrossRef
23.
Zurück zum Zitat Liu G, Jiang S, Zhao W, Chen Q (2017) A new modeling approach for permanent magnet Vernier machine with modulation effect consideration. IEEE Trans Magn 53(1):1–12CrossRef Liu G, Jiang S, Zhao W, Chen Q (2017) A new modeling approach for permanent magnet Vernier machine with modulation effect consideration. IEEE Trans Magn 53(1):1–12CrossRef
24.
Zurück zum Zitat Heller B, Hamata V (1977) Harmonics field effects in induction machines. Elsevier, Amsterdam Heller B, Hamata V (1977) Harmonics field effects in induction machines. Elsevier, Amsterdam
25.
Zurück zum Zitat Duan Y, Harley RG (2011) A novel method for multiobjective design and optimization of three phase induction machines. IEEE Trans Ind Appl 46(4):1701–1715 Duan Y, Harley RG (2011) A novel method for multiobjective design and optimization of three phase induction machines. IEEE Trans Ind Appl 46(4):1701–1715
26.
Zurück zum Zitat Lucas C, Nasiri-Gheidari Z, Tootoonchian F (2010) Application of an imperialist competitive algorithm to the design of a linear induction motor. Elsevier Energy Convers Manag 51(7):1407–1411CrossRef Lucas C, Nasiri-Gheidari Z, Tootoonchian F (2010) Application of an imperialist competitive algorithm to the design of a linear induction motor. Elsevier Energy Convers Manag 51(7):1407–1411CrossRef
Metadaten
Titel
Optimal design procedure of a high-torque-density dual-stator consequent-pole Vernier PM machine
verfasst von
Mozaffar Vali
Taher Niknam
Hamed Gorginpour
Bahman Bahmani-Firouzi
Publikationsdatum
08.07.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 4/2020
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-020-01057-9

Weitere Artikel der Ausgabe 4/2020

Electrical Engineering 4/2020 Zur Ausgabe