Skip to main content
Erschienen in: Wireless Networks 5/2021

14.05.2021 | Original Paper

Optimal performance of resource allocation in LTE-A for heterogeneous cellular network

verfasst von: Shweta Kukade, Mukul Sutaone, Rajendrakumar Patil

Erschienen in: Wireless Networks | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Long Term Evolution—Advanced (LTE-A) is the most widely used and encouraging technology for 4G and 5G mobile networks. The LTE technology in wireless networks has achieved a significantly high throughput because it makes use of multiple access schemes. We propose an iterative heuristic optimal resource allocation (HORA) algorithm and a chunk based resource block allocation (CRBA) scheduling algorithm to determine resource block (RB) allocation among users to satisfy the quality of service requirement. A heuristic approach which is used in HORA offers a tradeoff between computational complexity and performance. It performs RB and power allocation separately to reduce computational complexity. In the CRBA algorithm sets of RBs are allocated to groups of users keeping power constant to all users. User selection is performed based on channel conditions to improve throughput. RB allocation is an additive method to maximize the data transmission rate and energy efficiency. The use of channel quality indicator feedback from the user equipment (UE) to eNodeB plays an important role in the selection of appropriate modulation and coding schemes and benefits the assigned chunk of RBs to users in the wideband channel-dependent selective frequency-time domain. Here, RB usage and quality-of-service (QoS) constraint are considered for the scheduling algorithm. The HORA algorithm assigns most RBs to users who have high-value signal to noise ratio and continues the RB allocation until it meets the QoS criteria of all users in consideration of the threshold value of the power budget. Problems that arise during continuous resource allocation to the scheduled user are considered as APX-hard and NP-hard problems. An RB and power allocation optimization problem is formulated for the maximum data rate in the cellular network. The simulation results show that the proposed approaches demonstrate considerable throughput improvement at the user end in a significant and robust condition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mousavi, H., Amiri, I. S., Mostafavi, M. A., & Choon, C. Y. (2019). LTE physical layer: Performance analysis and evaluation. Applied computing and informatics, 15(1), 34–44CrossRef Mousavi, H., Amiri, I. S., Mostafavi, M. A., & Choon, C. Y. (2019). LTE physical layer: Performance analysis and evaluation. Applied computing and informatics, 15(1), 34–44CrossRef
2.
Zurück zum Zitat Abdelsadek, M. Y., Gadallah, Y., & Ahmed, M. H. (2019). Matching-based resource allocation for critical MTC in massive MIMO LTE networks. IEEE Access, 7, 127141–127153CrossRef Abdelsadek, M. Y., Gadallah, Y., & Ahmed, M. H. (2019). Matching-based resource allocation for critical MTC in massive MIMO LTE networks. IEEE Access, 7, 127141–127153CrossRef
3.
Zurück zum Zitat Monikandan, B. S., Sivasubramanian, A., Babu, S. P. K., Venkatesan, G. P., & Arunachalaperumal, C. (2020). Channel aware optimized proportional fair scheduler for LTE downlink. Peer-to-Peer Networking and Applications, 13, 1–10CrossRef Monikandan, B. S., Sivasubramanian, A., Babu, S. P. K., Venkatesan, G. P., & Arunachalaperumal, C. (2020). Channel aware optimized proportional fair scheduler for LTE downlink. Peer-to-Peer Networking and Applications, 13, 1–10CrossRef
4.
Zurück zum Zitat Aijaz, A., Chu, X., & Aghvami, A. H. (2014). Energy efficient design of SC-FDMA based uplink under QoS constraints. IEEE Wireless Communications Letters, 3(2), 149–152CrossRef Aijaz, A., Chu, X., & Aghvami, A. H. (2014). Energy efficient design of SC-FDMA based uplink under QoS constraints. IEEE Wireless Communications Letters, 3(2), 149–152CrossRef
5.
Zurück zum Zitat Triantafyllopoulou, D., Kollias, K., & Moessner, K. (2015). QoS and energy efficient resource allocation in uplink SC-FDMA systems. IEEE Transactions on Wireless Communications, 14(6), 3033–3045CrossRef Triantafyllopoulou, D., Kollias, K., & Moessner, K. (2015). QoS and energy efficient resource allocation in uplink SC-FDMA systems. IEEE Transactions on Wireless Communications, 14(6), 3033–3045CrossRef
6.
Zurück zum Zitat Kabir, M. T., & Masouros, C. (2020). Delay-constrained beamforming and resource allocation in full duplex systems. IEEE Transactions on Vehicular Technology, 69(3), 3476–3480CrossRef Kabir, M. T., & Masouros, C. (2020). Delay-constrained beamforming and resource allocation in full duplex systems. IEEE Transactions on Vehicular Technology, 69(3), 3476–3480CrossRef
7.
Zurück zum Zitat Noliya, A., & Kumar, S. (2020). Performance analysis of resource scheduling techniques in homogeneous and heterogeneous small cell LTE-A networks. Wireless Personal Communications, 112, 1–30CrossRef Noliya, A., & Kumar, S. (2020). Performance analysis of resource scheduling techniques in homogeneous and heterogeneous small cell LTE-A networks. Wireless Personal Communications, 112, 1–30CrossRef
8.
Zurück zum Zitat Mardani, M. R., & Ghanbari, M. (2019). Robust resource allocation scheme under channel uncertainties for LTE-A systems. Wireless Networks, 25(3), 1313–1325CrossRef Mardani, M. R., & Ghanbari, M. (2019). Robust resource allocation scheme under channel uncertainties for LTE-A systems. Wireless Networks, 25(3), 1313–1325CrossRef
9.
Zurück zum Zitat Da Mata, S. H., & Guardieiro, P. R. (2017). Resource allocation for the LTE uplink based on genetic algorithms in mixed traffic environments. Computer Communications, 107, 125–137CrossRef Da Mata, S. H., & Guardieiro, P. R. (2017). Resource allocation for the LTE uplink based on genetic algorithms in mixed traffic environments. Computer Communications, 107, 125–137CrossRef
10.
Zurück zum Zitat De La Fuente, A., Femenias, G., Riera-Palou, F., & Armada, A. G. (2018). Subband CQI feedback-based multicast resource allocation in MIMO-OFDMA networks. IEEE Transactions on Broadcasting, 64(4), 846–864CrossRef De La Fuente, A., Femenias, G., Riera-Palou, F., & Armada, A. G. (2018). Subband CQI feedback-based multicast resource allocation in MIMO-OFDMA networks. IEEE Transactions on Broadcasting, 64(4), 846–864CrossRef
11.
Zurück zum Zitat Du, J., Zhao, L., Feng, J., Xin, J., & Wang, Y. (2016). Enhanced PSO based energy-efficient resource allocation and CQI based MCS selection in LTE-A heterogeneous system. China Communications, 13(11), 197–204CrossRef Du, J., Zhao, L., Feng, J., Xin, J., & Wang, Y. (2016). Enhanced PSO based energy-efficient resource allocation and CQI based MCS selection in LTE-A heterogeneous system. China Communications, 13(11), 197–204CrossRef
12.
Zurück zum Zitat Kumar, V., & Mehta, N. B. (2019). Modeling and analysis of differential CQI feedback in 4G/5G OFDM cellular systems. IEEE Transactions on Wireless Communications, 18(4), 2361–2373CrossRef Kumar, V., & Mehta, N. B. (2019). Modeling and analysis of differential CQI feedback in 4G/5G OFDM cellular systems. IEEE Transactions on Wireless Communications, 18(4), 2361–2373CrossRef
13.
Zurück zum Zitat Chang, C. H., Chao, H. L., & Liu, C. L. (2011). Sum throughput-improved resource allocation for LTE uplink transmission. In 2011 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5). IEEE. Chang, C. H., Chao, H. L., & Liu, C. L. (2011). Sum throughput-improved resource allocation for LTE uplink transmission. In 2011 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5). IEEE.
14.
Zurück zum Zitat Khamidehi, B., & Sabbaghian, M. (2017). Resource allocation for SC-FDMA femtocell networks. IEEE Transactions on Vehicular Technology, 68(5), 4573–4585CrossRef Khamidehi, B., & Sabbaghian, M. (2017). Resource allocation for SC-FDMA femtocell networks. IEEE Transactions on Vehicular Technology, 68(5), 4573–4585CrossRef
15.
Zurück zum Zitat Baskaran, S. B. M., Raja, G., Bashir, A. K., & Murata, M. (2017). QoS-aware frequency-based 4G+ relative authentication model for next generation LTE and its dependent public safety networks. IEEE Access, 5, 21977–21991CrossRef Baskaran, S. B. M., Raja, G., Bashir, A. K., & Murata, M. (2017). QoS-aware frequency-based 4G+ relative authentication model for next generation LTE and its dependent public safety networks. IEEE Access, 5, 21977–21991CrossRef
16.
Zurück zum Zitat Kim, S. H., & Kim, J. (2019). An opportunistic MCS drop scheme for improved LTE eMBMS transmission. Wireless Personal Communications, 107(3), 1431–1442CrossRef Kim, S. H., & Kim, J. (2019). An opportunistic MCS drop scheme for improved LTE eMBMS transmission. Wireless Personal Communications, 107(3), 1431–1442CrossRef
17.
Zurück zum Zitat Lee, Y. L., Loo, J., & Chuah, T. C. (2016). Dynamic resource management for lte-based hybrid access femtocell systems. IEEE Systems Journal, 12(1), 959–970CrossRef Lee, Y. L., Loo, J., & Chuah, T. C. (2016). Dynamic resource management for lte-based hybrid access femtocell systems. IEEE Systems Journal, 12(1), 959–970CrossRef
18.
Zurück zum Zitat Dechene, D. J., & Shami, A. (2012). Energy-aware resource allocation strategies for LTE uplink with synchronous HARQ constraints. IEEE Transactions on Mobile Computing, 13(2), 422–433CrossRef Dechene, D. J., & Shami, A. (2012). Energy-aware resource allocation strategies for LTE uplink with synchronous HARQ constraints. IEEE Transactions on Mobile Computing, 13(2), 422–433CrossRef
19.
Zurück zum Zitat Femenias, G., Riera-Palou, F., & Thompson, J. S. (2016). Robust scheduling and resource allocation in the downlink of spatially correlated MIMO-OFDMA wireless systems with imperfect CSIT. IEEE Transactions on Vehicular Technology, 65(2), 614–629CrossRef Femenias, G., Riera-Palou, F., & Thompson, J. S. (2016). Robust scheduling and resource allocation in the downlink of spatially correlated MIMO-OFDMA wireless systems with imperfect CSIT. IEEE Transactions on Vehicular Technology, 65(2), 614–629CrossRef
20.
Zurück zum Zitat Ragaleux, A., Baey, S., & Karaca, M. (2017). Standard-compliant LTE-A uplink scheduling scheme with quality of service. IEEE Transactions on Vehicular Technology, 66(8), 7207–7222CrossRef Ragaleux, A., Baey, S., & Karaca, M. (2017). Standard-compliant LTE-A uplink scheduling scheme with quality of service. IEEE Transactions on Vehicular Technology, 66(8), 7207–7222CrossRef
21.
Zurück zum Zitat Palit, B., & Das, S. S. (2020). A cross layer framework of radio resource allocation for QoS provisioning in multi-channel fading wireless networks. Wireless Networks, 26(1), 403–419CrossRef Palit, B., & Das, S. S. (2020). A cross layer framework of radio resource allocation for QoS provisioning in multi-channel fading wireless networks. Wireless Networks, 26(1), 403–419CrossRef
22.
Zurück zum Zitat Wang, C., Huang, J. J., & Su, C. Y. (2015). Buffer-aware and delay-sensitive resource allocation in the uplink of 3GPP LTE networks. Wireless Personal Communications, 84(3), 1877–1890CrossRef Wang, C., Huang, J. J., & Su, C. Y. (2015). Buffer-aware and delay-sensitive resource allocation in the uplink of 3GPP LTE networks. Wireless Personal Communications, 84(3), 1877–1890CrossRef
23.
Zurück zum Zitat Ruby, R., Leung, V. C., & Michelson, D. G. (2014). Uplink scheduler for SC-FDMA-based heterogeneous traffic networks with QoS assurance and guaranteed resource utilization. IEEE Transactions on Vehicular Technology, 64(10), 4780–4796CrossRef Ruby, R., Leung, V. C., & Michelson, D. G. (2014). Uplink scheduler for SC-FDMA-based heterogeneous traffic networks with QoS assurance and guaranteed resource utilization. IEEE Transactions on Vehicular Technology, 64(10), 4780–4796CrossRef
24.
Zurück zum Zitat Chaudhuri, S., Baig, I., & Das, D. (2015). Utility based QoS aware uplink scheduler scheme for LTE small cell network. In 2015 IEEE International Conference on Communications (ICC) (pp. 3149–3154). IEEE. Chaudhuri, S., Baig, I., & Das, D. (2015). Utility based QoS aware uplink scheduler scheme for LTE small cell network. In 2015 IEEE International Conference on Communications (ICC) (pp. 3149–3154). IEEE.
25.
Zurück zum Zitat Thayammal, M. C., & Mary Linda, M. (2019). Utility-based optimal resource allocation in LTE-A networks by hybrid ACO-TS with MFA scheme. The Computer Journal, 62(6), 931–942CrossRef Thayammal, M. C., & Mary Linda, M. (2019). Utility-based optimal resource allocation in LTE-A networks by hybrid ACO-TS with MFA scheme. The Computer Journal, 62(6), 931–942CrossRef
26.
Zurück zum Zitat Prasad, N., Zhang, H., Zhu, H., & Rangarajan, S. (2012). Multiuser scheduling in the 3GPP LTE cellular uplink. IEEE Transactions on Mobile Computing, 13(1), 130–145CrossRef Prasad, N., Zhang, H., Zhu, H., & Rangarajan, S. (2012). Multiuser scheduling in the 3GPP LTE cellular uplink. IEEE Transactions on Mobile Computing, 13(1), 130–145CrossRef
27.
Zurück zum Zitat Afif, M., Hassen, W. B., & Tabbane, S. (2019). A resource allocation algorithm for throughput maximization with fairness increase based on virtual PRB in MIMO-OFDMA systems. Wireless Networks, 25(3), 1083–1097CrossRef Afif, M., Hassen, W. B., & Tabbane, S. (2019). A resource allocation algorithm for throughput maximization with fairness increase based on virtual PRB in MIMO-OFDMA systems. Wireless Networks, 25(3), 1083–1097CrossRef
28.
Zurück zum Zitat Piro, G., Grieco, L. A., Boggia, G., Capozzi, F., & Camarda, P. (2010). Simulating LTE cellular systems: An open-source framework. IEEE transactions on vehicular technology, 60(2), 498–513CrossRef Piro, G., Grieco, L. A., Boggia, G., Capozzi, F., & Camarda, P. (2010). Simulating LTE cellular systems: An open-source framework. IEEE transactions on vehicular technology, 60(2), 498–513CrossRef
29.
Zurück zum Zitat Wu, X., Ma, Z., Chen, X., Labeau, F., & Han, S. (2019). Energy efficiency-aware joint resource allocation and power allocation in multi-user beamforming. IEEE Transactions on Vehicular Technology, 68(5), 4824–4833CrossRef Wu, X., Ma, Z., Chen, X., Labeau, F., & Han, S. (2019). Energy efficiency-aware joint resource allocation and power allocation in multi-user beamforming. IEEE Transactions on Vehicular Technology, 68(5), 4824–4833CrossRef
30.
Zurück zum Zitat Lim, J. H., Ahmad, B., Jusoh, M., & Sabapathy, T. (2017). Deployment of Resource Allocation and Power Control Schemes in Long Term Evolution Advanced (LTE-A) Hybrid Network. Wireless Personal Communications, 96(2), 2943–2963CrossRef Lim, J. H., Ahmad, B., Jusoh, M., & Sabapathy, T. (2017). Deployment of Resource Allocation and Power Control Schemes in Long Term Evolution Advanced (LTE-A) Hybrid Network. Wireless Personal Communications, 96(2), 2943–2963CrossRef
31.
Zurück zum Zitat Lu, X., Ni, Q., Li, W., & Zhang, H. (2017). Dynamic user grouping and joint resource allocation with multi-cell cooperation for uplink virtual MIMO systems. IEEE Transactions on Wireless Communications, 16(6), 3854–3869CrossRef Lu, X., Ni, Q., Li, W., & Zhang, H. (2017). Dynamic user grouping and joint resource allocation with multi-cell cooperation for uplink virtual MIMO systems. IEEE Transactions on Wireless Communications, 16(6), 3854–3869CrossRef
32.
Zurück zum Zitat Lunttila, T., Lindholm, J., Pajukoski, K., Tiirola, E., &Toskala, A. (2007). EUTRAN uplink performance. In 2007 2nd International Symposium on Wireless Pervasive Computing. IEEE. Lunttila, T., Lindholm, J., Pajukoski, K., Tiirola, E., &Toskala, A. (2007). EUTRAN uplink performance. In 2007 2nd International Symposium on Wireless Pervasive Computing. IEEE.
33.
Zurück zum Zitat Kukade, S. Y., Sutaone M. S., & Patil R. A. (2021). Evaluation of SC-FDMA Physical Link Using USRP. Advances in Communication and Computational Technology. Springer, Singapore (pp. 1003–1017). Kukade, S. Y., Sutaone M. S., & Patil R. A. (2021). Evaluation of SC-FDMA Physical Link Using USRP. Advances in Communication and Computational Technology. Springer, Singapore (pp. 1003–1017).
34.
Zurück zum Zitat Baker, M. (2009, December). LTE-Advanced physical layer. In Proc. IMT-Advanced Evaluation Workshop, 3GPP, Beijing (pp. 1–48). Baker, M. (2009, December). LTE-Advanced physical layer. In Proc. IMT-Advanced Evaluation Workshop, 3GPP, Beijing (pp. 1–48).
35.
Zurück zum Zitat Wang, M., Zhang, J., Ren, B., Yang, W., Zou, J., Hua, M., & You, X. (2015). The evolution of LTE physical layer control channels. IEEE Communications Surveys and Tutorials, 18(2), 1336–1354CrossRef Wang, M., Zhang, J., Ren, B., Yang, W., Zou, J., Hua, M., & You, X. (2015). The evolution of LTE physical layer control channels. IEEE Communications Surveys and Tutorials, 18(2), 1336–1354CrossRef
36.
Zurück zum Zitat Razavi, S. M., & Ratnarajah, T. (2016). Adaptive LS- and MMSE-based beamformer design for multiuser MIMO interference channels. IEEE Transactions on Vehicular Technology, 65(1), 132–144CrossRef Razavi, S. M., & Ratnarajah, T. (2016). Adaptive LS- and MMSE-based beamformer design for multiuser MIMO interference channels. IEEE Transactions on Vehicular Technology, 65(1), 132–144CrossRef
37.
Zurück zum Zitat Guo, W., Fan, J., Li, G. Y., Yin, Q., & Zhu, X. (2016). Adaptive SU/MU-MIMO scheduling schemes for LTE-A downlink transmission. IET Communications, 11(6), 783–792CrossRef Guo, W., Fan, J., Li, G. Y., Yin, Q., & Zhu, X. (2016). Adaptive SU/MU-MIMO scheduling schemes for LTE-A downlink transmission. IET Communications, 11(6), 783–792CrossRef
38.
Zurück zum Zitat ETSI TS 136 213 V15.2.0, LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (3GPP TS 36.213 version 15.2.0 Release 15), (2018–10). ETSI TS 136 213 V15.2.0, LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (3GPP TS 36.213 version 15.2.0 Release 15), (2018–10).
Metadaten
Titel
Optimal performance of resource allocation in LTE-A for heterogeneous cellular network
verfasst von
Shweta Kukade
Mukul Sutaone
Rajendrakumar Patil
Publikationsdatum
14.05.2021
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 5/2021
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-021-02635-w

Weitere Artikel der Ausgabe 5/2021

Wireless Networks 5/2021 Zur Ausgabe