Skip to main content
Erschienen in: Quantum Information Processing 4/2017

01.04.2017

Optimal probabilistic dense coding schemes

verfasst von: Roger A. Kögler, Leonardo Neves

Erschienen in: Quantum Information Processing | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dense coding with non-maximally entangled states has been investigated in many different scenarios. We revisit this problem for protocols adopting the standard encoding scheme. In this case, the set of possible classical messages cannot be perfectly distinguished due to the non-orthogonality of the quantum states carrying them. So far, the decoding process has been approached in two ways: (i) The message is always inferred, but with an associated (minimum) error; (ii) the message is inferred without error, but only sometimes; in case of failure, nothing else is done. Here, we generalize on these approaches and propose novel optimal probabilistic decoding schemes. The first uses quantum-state separation to increase the distinguishability of the messages with an optimal success probability. This scheme is shown to include (i) and (ii) as special cases and continuously interpolate between them, which enables the decoder to trade-off between the level of confidence desired to identify the received messages and the success probability for doing so. The second scheme, called multistage decoding, applies only for qudits (d-level quantum systems with \(d>2\)) and consists of further attempts in the state identification process in case of failure in the first one. We show that this scheme is advantageous over (ii) as it increases the mutual information between the sender and receiver.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For qudits (d-level systems), this number will be intermediate between the one achieved by a maximally entangled and a non-entangled state. For qubits, this number would be 3, but as shown in [13], it is impossible to encode three perfectly distinguishable messages in any partially entangled two-qubit state.
 
2
To be defined in Sect. 2.
 
3
Even if the bases \(\{|m\rangle _1\}\) and \(\{|n\rangle _2\}\) have different cardinalities, the \(\hat{G}_{12}^{\mathrm{xor}}\) gate can still be defined, as pointed out in [30].
 
4
The Fourier transform is defined as \(\hat{\mathcal {F}}_{1,D}=D^{-1/2}\sum _{m,n=0}^{D-1}e^{2\pi imn/D}|m\rangle \langle n|\). Along the paper, the (sub)space where it acts depends on the relationship between \(d_1\), \(d_2\), and D (see Table 1). If \(d_1>d_2\), then \(D\le d_2\) so that \(\hat{\mathcal {F}}_{1,D}\) acts, necessarily, on a \(d_2\)-dimensional subspace of \({\mathcal {H}}_1\). If \(d_1<d_2\), then \(D\le d_1\) so that \(\hat{\mathcal {F}}_{1,D}\) acts on a subspace of \({\mathcal {H}}_1\), for \(D<d_1\), or the entire \({\mathcal {H}}_1\) space, for \(D=d_1\).
 
5
This is not a requirement for the process but will be adopted here in order to establish a comparison with previous results in the literature and also to make the whole discussion clearer.
 
6
In surface (b), the curves that reach the lower bound of 2 bits correspond to entangled states whose minimum Schmidt coefficient has multiplicity two, so that the second stage of MC measurement would be useless.
 
Literatur
1.
Zurück zum Zitat Barnett, S.M.: Quantum Information. Oxford University Press, Oxford (2009)MATH Barnett, S.M.: Quantum Information. Oxford University Press, Oxford (2009)MATH
2.
Zurück zum Zitat Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefMATH Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefMATH
4.
Zurück zum Zitat Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefMATH Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)ADSMathSciNetCrossRefMATH
5.
Zurück zum Zitat Barenco, A., Ekert, A.K.: Dense coding based on quantum entanglement. J. Mod. Opt. 42, 1253 (1995)ADSCrossRef Barenco, A., Ekert, A.K.: Dense coding based on quantum entanglement. J. Mod. Opt. 42, 1253 (1995)ADSCrossRef
6.
Zurück zum Zitat Hausladen, P., Jozsa, R., Schumacher, B., Westmoreland, M., Wootters, W.K.: Classical information capacity of a quantum channel. Phys. Rev. A 54, 1869 (1996)ADSMathSciNetCrossRef Hausladen, P., Jozsa, R., Schumacher, B., Westmoreland, M., Wootters, W.K.: Classical information capacity of a quantum channel. Phys. Rev. A 54, 1869 (1996)ADSMathSciNetCrossRef
7.
Zurück zum Zitat Bose, S., Plenio, M.B., Vedral, V.: Mixed state dense coding and its relation to entanglement measures. J. Mod. Opt. 47, 291 (2000)ADSMathSciNetCrossRef Bose, S., Plenio, M.B., Vedral, V.: Mixed state dense coding and its relation to entanglement measures. J. Mod. Opt. 47, 291 (2000)ADSMathSciNetCrossRef
9.
Zurück zum Zitat Ziman, M., Bužek, V.: Equally distant, partially entangled alphabet states for quantum channels. Phys. Rev. A 62, 052301 (2000)ADSCrossRef Ziman, M., Bužek, V.: Equally distant, partially entangled alphabet states for quantum channels. Phys. Rev. A 62, 052301 (2000)ADSCrossRef
11.
Zurück zum Zitat Bowen, G.: Classical information capacity of superdense coding. Phys. Rev. A 63, 022302 (2001)ADSCrossRef Bowen, G.: Classical information capacity of superdense coding. Phys. Rev. A 63, 022302 (2001)ADSCrossRef
12.
Zurück zum Zitat Pati, A.K., Parashar, P., Agrawal, P.: Probabilistic superdense coding. Phys. Rev. A 72, 012329 (2005)ADSCrossRef Pati, A.K., Parashar, P., Agrawal, P.: Probabilistic superdense coding. Phys. Rev. A 72, 012329 (2005)ADSCrossRef
13.
Zurück zum Zitat Mozes, S., Oppenheim, J., Reznik, B.: Deterministic dense coding with partially entangled states. Phys. Rev. A 71, 012311 (2005)ADSCrossRef Mozes, S., Oppenheim, J., Reznik, B.: Deterministic dense coding with partially entangled states. Phys. Rev. A 71, 012311 (2005)ADSCrossRef
14.
Zurück zum Zitat Ji, Z., Feng, Y., Duan, R., Ying, M.: Boundary effect of deterministic dense coding. Phys. Rev. A 73, 034307 (2006)ADSCrossRef Ji, Z., Feng, Y., Duan, R., Ying, M.: Boundary effect of deterministic dense coding. Phys. Rev. A 73, 034307 (2006)ADSCrossRef
15.
Zurück zum Zitat Wu, S., Cohen, S.M., Sun, Y., Griffiths, R.B.: Deterministic and unambiguous dense coding. Phys. Rev. A 73, 042311 (2006)ADSCrossRef Wu, S., Cohen, S.M., Sun, Y., Griffiths, R.B.: Deterministic and unambiguous dense coding. Phys. Rev. A 73, 042311 (2006)ADSCrossRef
16.
Zurück zum Zitat Bourdon, P.S., Gerjuoy, E., McDonald, J.P., Williams, H.T.: Deterministic dense coding and entanglement entropy. Phys. Rev. A 77, 022305 (2008)ADSCrossRef Bourdon, P.S., Gerjuoy, E., McDonald, J.P., Williams, H.T.: Deterministic dense coding and entanglement entropy. Phys. Rev. A 77, 022305 (2008)ADSCrossRef
17.
Zurück zum Zitat Beran, M.R., Cohen, S.M.: Nonoptimality of unitary encoding with quantum channels assisted by entanglement. Phys. Rev. A 78, 062337 (2008)ADSCrossRef Beran, M.R., Cohen, S.M.: Nonoptimality of unitary encoding with quantum channels assisted by entanglement. Phys. Rev. A 78, 062337 (2008)ADSCrossRef
18.
Zurück zum Zitat Bruß, D., D’Ariano, G.M., Lewenstein, M., Macchiavello, C., Sen(De), A., Sen, U.: Distributed quantum dense coding. Phys. Rev. Lett. 93, 210501 (2004)ADSCrossRefMATH Bruß, D., D’Ariano, G.M., Lewenstein, M., Macchiavello, C., Sen(De), A., Sen, U.: Distributed quantum dense coding. Phys. Rev. Lett. 93, 210501 (2004)ADSCrossRefMATH
20.
Zurück zum Zitat Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photonics 1, 238 (2009)CrossRef Barnett, S.M., Croke, S.: Quantum state discrimination. Adv. Opt. Photonics 1, 238 (2009)CrossRef
22.
Zurück zum Zitat Hayashi, A., Hashimoto, T., Horibe, M.: State discrimination with error margin and its locality. Phys. Rev. A 78, 012333 (2008)ADSCrossRef Hayashi, A., Hashimoto, T., Horibe, M.: State discrimination with error margin and its locality. Phys. Rev. A 78, 012333 (2008)ADSCrossRef
23.
Zurück zum Zitat Jiménez, O., Solís-Prosser, M.A., Delgado, A., Neves, L.: Maximum-confidence discrimination among symmetric qudit states. Phys. Rev. A 84, 062315 (2011)ADSCrossRef Jiménez, O., Solís-Prosser, M.A., Delgado, A., Neves, L.: Maximum-confidence discrimination among symmetric qudit states. Phys. Rev. A 84, 062315 (2011)ADSCrossRef
24.
Zurück zum Zitat Bagan, E., Muñoz-Tapia, R., Olivares-Rentería, G.A., Bergou, J.A.: Optimal discrimination of quantum states with a fixed rate of inconclusive outcomes. Phys. Rev. A 86, 040303(R) (2012)ADSCrossRef Bagan, E., Muñoz-Tapia, R., Olivares-Rentería, G.A., Bergou, J.A.: Optimal discrimination of quantum states with a fixed rate of inconclusive outcomes. Phys. Rev. A 86, 040303(R) (2012)ADSCrossRef
25.
Zurück zum Zitat Zhang, G., Yu, L., Zhang, W., Cao, Z.: Extracting remaining information from an inconclusive result in optimal unambiguous state discrimination. Quantum Inf. Process. 13, 2619 (2014)ADSMathSciNetCrossRefMATH Zhang, G., Yu, L., Zhang, W., Cao, Z.: Extracting remaining information from an inconclusive result in optimal unambiguous state discrimination. Quantum Inf. Process. 13, 2619 (2014)ADSMathSciNetCrossRefMATH
26.
Zurück zum Zitat Solís-Prosser, M.A., Delgado, A., Jiménez, O., Neves, L.: Parametric separation of symmetric pure quantum states. Phys. Rev. A 93, 012337 (2016)ADSCrossRef Solís-Prosser, M.A., Delgado, A., Jiménez, O., Neves, L.: Parametric separation of symmetric pure quantum states. Phys. Rev. A 93, 012337 (2016)ADSCrossRef
27.
Zurück zum Zitat Neves, L., Solís-Prosser, M.A., Delgado, A., Jiménez, O.: Quantum teleportation via maximum-confidence quantum measurements. Phys. Rev. A 85, 062322 (2012)ADSCrossRef Neves, L., Solís-Prosser, M.A., Delgado, A., Jiménez, O.: Quantum teleportation via maximum-confidence quantum measurements. Phys. Rev. A 85, 062322 (2012)ADSCrossRef
28.
Zurück zum Zitat Solís-Prosser, M.A., Delgado, A., Jiménez, O., Neves, L.: Deterministic and probabilistic entanglement swapping of nonmaximally entangled states assisted by optimal quantum state discrimination. Phys. Rev. A 89, 012337 (2014)ADSCrossRef Solís-Prosser, M.A., Delgado, A., Jiménez, O., Neves, L.: Deterministic and probabilistic entanglement swapping of nonmaximally entangled states assisted by optimal quantum state discrimination. Phys. Rev. A 89, 012337 (2014)ADSCrossRef
29.
Zurück zum Zitat Alber, G., Delgado, A., Gisin, N., Jex, I.: Efficient bipartite quantum state purification in arbitrary dimensional Hilbert spaces. J. Phys. A 34, 8821 (2001)ADSMathSciNetCrossRefMATH Alber, G., Delgado, A., Gisin, N., Jex, I.: Efficient bipartite quantum state purification in arbitrary dimensional Hilbert spaces. J. Phys. A 34, 8821 (2001)ADSMathSciNetCrossRefMATH
31.
Zurück zum Zitat Chefles, A., Barnett, S.M.: Optimum unambiguous discrimination between linearly independent symmetric states. Phys. Lett. A 250, 223 (1998)ADSCrossRef Chefles, A., Barnett, S.M.: Optimum unambiguous discrimination between linearly independent symmetric states. Phys. Lett. A 250, 223 (1998)ADSCrossRef
32.
Zurück zum Zitat Cover, T.M., Thomas, J.A.: Elements of Information Theory. Oxford University Press, Oxford (2009)MATH Cover, T.M., Thomas, J.A.: Elements of Information Theory. Oxford University Press, Oxford (2009)MATH
33.
Zurück zum Zitat Ban, M., Kurokawa, K., Momose, R., Hirota, O.: Optimum measurements for discrimination among symmetric quantum states and parameter estimation. Int. J. Theor. Phys. 36, 1269 (1997)MathSciNetCrossRefMATH Ban, M., Kurokawa, K., Momose, R., Hirota, O.: Optimum measurements for discrimination among symmetric quantum states and parameter estimation. Int. J. Theor. Phys. 36, 1269 (1997)MathSciNetCrossRefMATH
Metadaten
Titel
Optimal probabilistic dense coding schemes
verfasst von
Roger A. Kögler
Leonardo Neves
Publikationsdatum
01.04.2017
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 4/2017
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-017-1545-7

Weitere Artikel der Ausgabe 4/2017

Quantum Information Processing 4/2017 Zur Ausgabe

Neuer Inhalt