Skip to main content
Erschienen in: Energy Systems 2/2015

01.06.2015 | Original Paper

Optimal revamp of multi-region carbon capture and storage (CCS) systems by two-step linear optimization

verfasst von: John Frederick D. Tapia, Raymond R. Tan

Erschienen in: Energy Systems | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

CO\(_{2 }\) capture and storage (CCS) is considered as an important technology which involves capturing CO\(_{2 }\) from sources and injecting it into geological reservoirs for permanent storage. In planning large-scale CCS systems, CO\(_{2 }\) sources need to be matched with geological sinks to maximize the reduction of CO\(_{2 }\) emissions. However, due to the long planning horizons of CCS systems, new information may arise or unexpected events may occur that necessitate network revamp. For example, new sources may come into existence, new sinks may be discovered, or existing sinks may prove to be structurally unsound. In this work, a revamp strategy using two-step linear optimization is developed, in which the trade-off between the cost of network modification and the objective of CO\(_{2}\) emissions reduction by sequestration is balanced. The method is based on three solutions: the original network implemented at the start of the planning horizon; the ideal network if the system were to be totally reconstructed; and the revamped network which results as a compromise between the previous two solutions. Three case studies with different scenarios are used to illustrate this approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat International Energy Agency: Key World Energy Statistics 2012. International Energy Agency, Paris (2012) International Energy Agency: Key World Energy Statistics 2012. International Energy Agency, Paris (2012)
2.
Zurück zum Zitat Davison, J., Freund, P., Smith, A.: Putting Carbon Back into the Ground. International Energy Agency Greenhouse Gas R&D Programme, Cheltenham (2001) Davison, J., Freund, P., Smith, A.: Putting Carbon Back into the Ground. International Energy Agency Greenhouse Gas R&D Programme, Cheltenham (2001)
3.
Zurück zum Zitat Wang, M., Lawal, A., Stephenson, P., Sidders, J., Ramshaw, C.: Post-combustion CO\(_{2}\) capture with chemical absorption: a state-of-the-art review. Chem. Eng. Res. Des. 89, 1609–1624 (2011)CrossRef Wang, M., Lawal, A., Stephenson, P., Sidders, J., Ramshaw, C.: Post-combustion CO\(_{2}\) capture with chemical absorption: a state-of-the-art review. Chem. Eng. Res. Des. 89, 1609–1624 (2011)CrossRef
4.
Zurück zum Zitat Kanniche, M., Gros-Bonnivard, R., Jaud, P., Valle-Marcos, J., Amann, J.M., Bouallou, C.: Pre-combustion, post-combustion and oxy-fuel combustion in thermal power plant for CO\(_{2 }\) capture. Appl. Therm. Eng. 30, 53–62 (2010)CrossRef Kanniche, M., Gros-Bonnivard, R., Jaud, P., Valle-Marcos, J., Amann, J.M., Bouallou, C.: Pre-combustion, post-combustion and oxy-fuel combustion in thermal power plant for CO\(_{2 }\) capture. Appl. Therm. Eng. 30, 53–62 (2010)CrossRef
5.
Zurück zum Zitat Wall, T., Liu, Y., Spero, C., Elliot, L., Khare, S., et al.: An overview on oxyfuel coal combustion–state of the art research and technology development. Chem. Eng. Res. Des. 87, 1003–1016 (2009)CrossRef Wall, T., Liu, Y., Spero, C., Elliot, L., Khare, S., et al.: An overview on oxyfuel coal combustion–state of the art research and technology development. Chem. Eng. Res. Des. 87, 1003–1016 (2009)CrossRef
6.
Zurück zum Zitat Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P., de Diego, L.F.: Progress in chemical-looping combustion and reforming technologies. Progr. Energy Combust. Sci. 38, 215–282 (2012)CrossRef Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P., de Diego, L.F.: Progress in chemical-looping combustion and reforming technologies. Progr. Energy Combust. Sci. 38, 215–282 (2012)CrossRef
7.
Zurück zum Zitat Gibbins, J., Chalmers, H.: Carbon capture and storage. Energy Policy 36, 4317–4322 (2008)CrossRef Gibbins, J., Chalmers, H.: Carbon capture and storage. Energy Policy 36, 4317–4322 (2008)CrossRef
8.
Zurück zum Zitat Ball, M., Wietschel, M.: The Hydrogen Economy: Opportunities and Challenges. Cambridge University Press, Cambridge (2009)CrossRef Ball, M., Wietschel, M.: The Hydrogen Economy: Opportunities and Challenges. Cambridge University Press, Cambridge (2009)CrossRef
9.
Zurück zum Zitat Zheng, Q.P., Rebennack, S., Pardalos, P.M., Pereira, M.V., Iliadis, N.A.: Handbook of CO\(_{2}\) in Power Systems. Springer, New York (2012) Zheng, Q.P., Rebennack, S., Pardalos, P.M., Pereira, M.V., Iliadis, N.A.: Handbook of CO\(_{2}\) in Power Systems. Springer, New York (2012)
10.
Zurück zum Zitat International Energy Agency: Technology Roadmap. Carbon Capture and Storage. International Energy Agency, Paris (2010) International Energy Agency: Technology Roadmap. Carbon Capture and Storage. International Energy Agency, Paris (2010)
11.
Zurück zum Zitat Asian Development Bank: Prospect of CCS in Southeast Asia. ADB Publication, Manila (2013) Asian Development Bank: Prospect of CCS in Southeast Asia. ADB Publication, Manila (2013)
12.
Zurück zum Zitat Huang, Y., Rebennack, S., Zheng, Q.P.: Techno-economic analysis and optimization models for carbon capture and storage: a survey. Energy Syst. 4, 315–353 (2013)CrossRef Huang, Y., Rebennack, S., Zheng, Q.P.: Techno-economic analysis and optimization models for carbon capture and storage: a survey. Energy Syst. 4, 315–353 (2013)CrossRef
13.
Zurück zum Zitat Turk, G.A., Cobb, T.B., Jankowski, D.J., Wolsky, A.M., Sparrow, F.T.: CO\(_{2}\) transport: a new application of the assignment problem. Energy 12, 123–130 (1987)CrossRef Turk, G.A., Cobb, T.B., Jankowski, D.J., Wolsky, A.M., Sparrow, F.T.: CO\(_{2}\) transport: a new application of the assignment problem. Energy 12, 123–130 (1987)CrossRef
14.
Zurück zum Zitat Middleton, R., Bielicki, J.: A comprehensive carbon capture and storage infrastructure model. Energy Proc. 1, 1611–1616 (2009)CrossRef Middleton, R., Bielicki, J.: A comprehensive carbon capture and storage infrastructure model. Energy Proc. 1, 1611–1616 (2009)CrossRef
15.
Zurück zum Zitat Fimbres Weihs, G.A., Wiley, D.E., Ho, M.: Steady-state optimisation of CCS pipeline networks for cases with multiple emission sources and injection sites: south-east Queensland case study. Energy Proc. 4, 2748–2755 (2011)CrossRef Fimbres Weihs, G.A., Wiley, D.E., Ho, M.: Steady-state optimisation of CCS pipeline networks for cases with multiple emission sources and injection sites: south-east Queensland case study. Energy Proc. 4, 2748–2755 (2011)CrossRef
16.
Zurück zum Zitat Middleton, R.S., Kuby, M.J., Wei, R., Keating, G.N., Pawar, R.J.: A dynamic model for optimally phasing in CO\(_{2}\) capture and storage infrastructure. Environ. Model. Softw. 37, 193–205 (2012)CrossRef Middleton, R.S., Kuby, M.J., Wei, R., Keating, G.N., Pawar, R.J.: A dynamic model for optimally phasing in CO\(_{2}\) capture and storage infrastructure. Environ. Model. Softw. 37, 193–205 (2012)CrossRef
17.
Zurück zum Zitat Tan, R.R., Aviso, K.B., Bandyopadhyay, S., Ng, D.K.S.: Optimal source-sink matching in carbon capture and storage systems with time, injection rate and capacity constraints. Environ. Progr. Sustain. Energy 32, 411–416 (2013)CrossRef Tan, R.R., Aviso, K.B., Bandyopadhyay, S., Ng, D.K.S.: Optimal source-sink matching in carbon capture and storage systems with time, injection rate and capacity constraints. Environ. Progr. Sustain. Energy 32, 411–416 (2013)CrossRef
18.
Zurück zum Zitat Tan, R.R., Aviso, K.B., Bandyopadhyay, S., Ng, D.K.S.: Continuous-time optimization model for source-sink matching in carbon capture and storage systems. Ind. Eng. Chem. Res. 51, 10015–10020 (2012)CrossRef Tan, R.R., Aviso, K.B., Bandyopadhyay, S., Ng, D.K.S.: Continuous-time optimization model for source-sink matching in carbon capture and storage systems. Ind. Eng. Chem. Res. 51, 10015–10020 (2012)CrossRef
19.
Zurück zum Zitat Lee, J.Y., Chen, C.L.: Comments on “continuous-time optimization model for source-sink matching in carbon capture and storage systems”. Ind. Eng. Chem. Res. 51, 11590–11591 (2012)CrossRef Lee, J.Y., Chen, C.L.: Comments on “continuous-time optimization model for source-sink matching in carbon capture and storage systems”. Ind. Eng. Chem. Res. 51, 11590–11591 (2012)CrossRef
20.
Zurück zum Zitat Elkamel, A., Hashim, H., Douglas, P.L., Croiset, E.: Optimization of energy usage for fleet-wide power generating system under carbon mitigation options. AIChE J. 55, 3168–3190 (2009)CrossRef Elkamel, A., Hashim, H., Douglas, P.L., Croiset, E.: Optimization of energy usage for fleet-wide power generating system under carbon mitigation options. AIChE J. 55, 3168–3190 (2009)CrossRef
21.
Zurück zum Zitat Pekala, L.M., Tan, R.R., Foo, D.C.Y., Jezowski, J.: Optimal energy planning models with carbon footprint constraints. Appl. Energy 87, 1903–1910 (2010)CrossRef Pekala, L.M., Tan, R.R., Foo, D.C.Y., Jezowski, J.: Optimal energy planning models with carbon footprint constraints. Appl. Energy 87, 1903–1910 (2010)CrossRef
22.
Zurück zum Zitat Tan, R.R., Ng, D.K.S., Foo, D.C.Y., Aviso, K.B.: Crisp and fuzzy integer programming models for optimal carbon sequestration retrofit in the power sector. Chem. Eng. Res. Des. 88, 1580–1588 (2010)CrossRef Tan, R.R., Ng, D.K.S., Foo, D.C.Y., Aviso, K.B.: Crisp and fuzzy integer programming models for optimal carbon sequestration retrofit in the power sector. Chem. Eng. Res. Des. 88, 1580–1588 (2010)CrossRef
23.
Zurück zum Zitat Lee, J.-Y., Tan, R.R., Chen, C.-L.: A unified model for the deployment of carbon capture and storage. Appl. Energy 121, 140–148 (2014)CrossRef Lee, J.-Y., Tan, R.R., Chen, C.-L.: A unified model for the deployment of carbon capture and storage. Appl. Energy 121, 140–148 (2014)CrossRef
24.
Zurück zum Zitat Tan, R.R., Ng, D.K.S., Foo, D.C.Y.: Pinch analysis approach to carbon-constrained planning for sustainable power generation. J. Clean. Prod. 17, 940–944 (2009)CrossRef Tan, R.R., Ng, D.K.S., Foo, D.C.Y.: Pinch analysis approach to carbon-constrained planning for sustainable power generation. J. Clean. Prod. 17, 940–944 (2009)CrossRef
25.
Zurück zum Zitat Ooi, R.E.H., Foo, D.C.Y., Tan, R.R., Ng, D.K.S., Smith, R.: Carbon constrained energy planning (CCEP) for sustainable power generation sector with automated targeting model. Ind. Eng. Chem. Res. 52, 9889–9896 (2013)CrossRef Ooi, R.E.H., Foo, D.C.Y., Tan, R.R., Ng, D.K.S., Smith, R.: Carbon constrained energy planning (CCEP) for sustainable power generation sector with automated targeting model. Ind. Eng. Chem. Res. 52, 9889–9896 (2013)CrossRef
26.
Zurück zum Zitat Ooi, R.E.H., Foo, D.C.Y., Tan, R.R.: Targeting for carbon sequestration retrofit planning in the power generation sector for multi-period problems. Appl. Energy 113, 477–487 (2014)CrossRef Ooi, R.E.H., Foo, D.C.Y., Tan, R.R.: Targeting for carbon sequestration retrofit planning in the power generation sector for multi-period problems. Appl. Energy 113, 477–487 (2014)CrossRef
27.
Zurück zum Zitat Sahu, G.C., Bandyopadhyay, S., Foo, D.K.S., Ng, D.C.Y., Tan, R.R.: Targeting for optimal grid-wide deployment of carbon capture and storage (CCS) technology. Process Saf. Environ. Prot. 92(6), 835–848 (2014)CrossRef Sahu, G.C., Bandyopadhyay, S., Foo, D.K.S., Ng, D.C.Y., Tan, R.R.: Targeting for optimal grid-wide deployment of carbon capture and storage (CCS) technology. Process Saf. Environ. Prot. 92(6), 835–848 (2014)CrossRef
28.
Zurück zum Zitat Ooi, R.E.H., Foo, D.C.Y., Ng, D.K.S., Tan, R.R.: Planning of carbon capture and storage with pinch analysis techniques. Chem. Eng. Res. Des. 91, 2721–2731 (2013)CrossRef Ooi, R.E.H., Foo, D.C.Y., Ng, D.K.S., Tan, R.R.: Planning of carbon capture and storage with pinch analysis techniques. Chem. Eng. Res. Des. 91, 2721–2731 (2013)CrossRef
29.
Zurück zum Zitat Diamante, J.A.R., Tan, R.R., Foo, D.C.Y., Ng, D.K.S., Aviso, K.B., Bandyopadhyay, S.: A graphical approach for pinch-based source-sink matching and sensitivity analysis in carbon capture and storage (CCS) systems. Ind. Eng. Chem. Res. 52, 7211–7222 (2013)CrossRef Diamante, J.A.R., Tan, R.R., Foo, D.C.Y., Ng, D.K.S., Aviso, K.B., Bandyopadhyay, S.: A graphical approach for pinch-based source-sink matching and sensitivity analysis in carbon capture and storage (CCS) systems. Ind. Eng. Chem. Res. 52, 7211–7222 (2013)CrossRef
30.
Zurück zum Zitat Diamante, J.A.R., Tan, R.R., Foo, D.C.Y., Ng, D.K.S., Aviso, K.B., Bandopadhyay, S.: Unified pinch approach for targeting of carbon capture and storage (CCS) systems with multiple time periods and regions. J. Clean. Prod. 71, 67–74 (2014)CrossRef Diamante, J.A.R., Tan, R.R., Foo, D.C.Y., Ng, D.K.S., Aviso, K.B., Bandopadhyay, S.: Unified pinch approach for targeting of carbon capture and storage (CCS) systems with multiple time periods and regions. J. Clean. Prod. 71, 67–74 (2014)CrossRef
31.
Zurück zum Zitat Middleton, R.S., Eccles, J.K.: The complex future of CO\(_{2}\) capture and storage: variable electricity generation and fossil fuel power. Appl. Energy 108, 66–73 (2013)CrossRef Middleton, R.S., Eccles, J.K.: The complex future of CO\(_{2}\) capture and storage: variable electricity generation and fossil fuel power. Appl. Energy 108, 66–73 (2013)CrossRef
32.
Zurück zum Zitat Middleton, R.S.: A new optimization approach to energy network modeling: anthropogenic CO\(_{2}\) capture coupled with enhanced oil recovery. Int. J. Energy Res. 37, 1794–1810 (2012)CrossRef Middleton, R.S.: A new optimization approach to energy network modeling: anthropogenic CO\(_{2}\) capture coupled with enhanced oil recovery. Int. J. Energy Res. 37, 1794–1810 (2012)CrossRef
33.
Zurück zum Zitat Brunsvold, A., Jakobsen, J.P., Husebye, J., Kalinin, A.: Case studies on CO\(_{2}\) transport infrastructure: optimization of pipeline network, effect of ownership, and political incentives. Energy Proc. 4, 3024–3031 (2011)CrossRef Brunsvold, A., Jakobsen, J.P., Husebye, J., Kalinin, A.: Case studies on CO\(_{2}\) transport infrastructure: optimization of pipeline network, effect of ownership, and political incentives. Energy Proc. 4, 3024–3031 (2011)CrossRef
34.
Zurück zum Zitat Middleton, R.S., Keating, G.N., Viswanathan, H.S., Stauffer, P.H., Pawar, R.J.: Effects of geologic reservoir uncertainty on CO\(_{2 }\)transport and storage infrastructure. Int. J. Greenh. Gas Control 8(132–142), 21 (2012) Middleton, R.S., Keating, G.N., Viswanathan, H.S., Stauffer, P.H., Pawar, R.J.: Effects of geologic reservoir uncertainty on CO\(_{2 }\)transport and storage infrastructure. Int. J. Greenh. Gas Control 8(132–142), 21 (2012)
35.
Zurück zum Zitat He, Y.-J., Zhang, Y., Ma, Z.-F., Sahinidis, N.V., Tan, R.R., Foo, D.C.Y.: Optimal source-sink matching in carbon capture and storage systems under uncertainty. Ind. Eng. Chem. Res. 53, 778–785 (2014)CrossRef He, Y.-J., Zhang, Y., Ma, Z.-F., Sahinidis, N.V., Tan, R.R., Foo, D.C.Y.: Optimal source-sink matching in carbon capture and storage systems under uncertainty. Ind. Eng. Chem. Res. 53, 778–785 (2014)CrossRef
36.
Zurück zum Zitat Tapia, J.F.D., Tan, R.R.: Fuzzy optimization of multi-period carbon capture and storage systems with parametric uncertainties. Process Saf. Environ. Prot. 92(6), 545–554 (2014)CrossRef Tapia, J.F.D., Tan, R.R.: Fuzzy optimization of multi-period carbon capture and storage systems with parametric uncertainties. Process Saf. Environ. Prot. 92(6), 545–554 (2014)CrossRef
37.
Zurück zum Zitat Huang, Y., Zheng, Q.P., Fan, N., Aminian, K.: Optimal scheduling for enhanced coal bed methane production through CO\(_{2}\) injection. Appl. Energy 113, 1475–1483 (2014)CrossRef Huang, Y., Zheng, Q.P., Fan, N., Aminian, K.: Optimal scheduling for enhanced coal bed methane production through CO\(_{2}\) injection. Appl. Energy 113, 1475–1483 (2014)CrossRef
38.
Zurück zum Zitat Leach, A., Mason, C.F., Veld, K.V.T.: Co-optimization of enhanced oil recovery and carbon sequestration. Resour. Energy Econ. 33, 893–912 (2011)CrossRef Leach, A., Mason, C.F., Veld, K.V.T.: Co-optimization of enhanced oil recovery and carbon sequestration. Resour. Energy Econ. 33, 893–912 (2011)CrossRef
39.
Zurück zum Zitat Sun, L., Chen, W.: The improved ChinaCCS decision support system: a case study for Beijing-Tianjin-Hebei Region of China. Appl. Energy 112, 793–799 (2013)CrossRef Sun, L., Chen, W.: The improved ChinaCCS decision support system: a case study for Beijing-Tianjin-Hebei Region of China. Appl. Energy 112, 793–799 (2013)CrossRef
40.
Zurück zum Zitat Appl, M.: Modernization of Older Plants (Revamping), in Ammonia: Principles and Industrial Practice. Wiley-VCH Verlag GmbH, Weinheim (2007) Appl, M.: Modernization of Older Plants (Revamping), in Ammonia: Principles and Industrial Practice. Wiley-VCH Verlag GmbH, Weinheim (2007)
41.
Zurück zum Zitat Wang, Shoou-I, Patel, Nitin M.: Creative ways of revamping NH\(_{3}\) plants can improve profitability. Process Saf. Progr. 3, 101–107 (1984) Wang, Shoou-I, Patel, Nitin M.: Creative ways of revamping NH\(_{3}\) plants can improve profitability. Process Saf. Progr. 3, 101–107 (1984)
42.
Zurück zum Zitat Minceva, M., Rodrigues, A.E.: Understanding and revamping of industrial scale SMB units for p-xylene separation. AIChE J. 53, 138–149 (2007)CrossRef Minceva, M., Rodrigues, A.E.: Understanding and revamping of industrial scale SMB units for p-xylene separation. AIChE J. 53, 138–149 (2007)CrossRef
43.
Zurück zum Zitat Bulasara, V.K., Uppaluri, R., Ghoshal, A.K.: Revamp study of crude distillation unit heat exchanger network: energy integration potential of delayed coking unit free hot streams. Appl. Therm. Eng. 29, 2271–2279 (2009)CrossRef Bulasara, V.K., Uppaluri, R., Ghoshal, A.K.: Revamp study of crude distillation unit heat exchanger network: energy integration potential of delayed coking unit free hot streams. Appl. Therm. Eng. 29, 2271–2279 (2009)CrossRef
44.
Zurück zum Zitat Enríquez-Gutiérrez, V.M., Jobson, M., Smith, R.: A design methodology for retrofit of crude oil distillation systems. Comput. Aided Chem. Eng. 33, 1549–1554 (2014)CrossRef Enríquez-Gutiérrez, V.M., Jobson, M., Smith, R.: A design methodology for retrofit of crude oil distillation systems. Comput. Aided Chem. Eng. 33, 1549–1554 (2014)CrossRef
45.
Zurück zum Zitat Cui, X., Xi, L.: Revamping of medium temperature shift process for hydrogen generation plant. Pet. Refin. Eng. 44, 10–12 (2014) Cui, X., Xi, L.: Revamping of medium temperature shift process for hydrogen generation plant. Pet. Refin. Eng. 44, 10–12 (2014)
46.
Zurück zum Zitat Wang, Y., Chu, K.H., Wang, Z.: Two-step methodology for retrofit design of cooling water networks. Ind. Eng. Chem. Res. 53, 274–286 (2014)CrossRef Wang, Y., Chu, K.H., Wang, Z.: Two-step methodology for retrofit design of cooling water networks. Ind. Eng. Chem. Res. 53, 274–286 (2014)CrossRef
47.
Zurück zum Zitat Riyanto, E., Chang, C.-T.: A heuristic revamp strategy to improve operational flexibility of water networks based on active constraints. Chem. Eng. Sci. 65, 2758–2770 (2010)CrossRef Riyanto, E., Chang, C.-T.: A heuristic revamp strategy to improve operational flexibility of water networks based on active constraints. Chem. Eng. Sci. 65, 2758–2770 (2010)CrossRef
48.
Zurück zum Zitat Jiang, D., Chang, C.-T.: An algorithmic revamp strategy for improving operational flexibility of multi-contaminant water networks. Chem. Eng. Sci. 102, 289–299 (2013)CrossRef Jiang, D., Chang, C.-T.: An algorithmic revamp strategy for improving operational flexibility of multi-contaminant water networks. Chem. Eng. Sci. 102, 289–299 (2013)CrossRef
49.
Zurück zum Zitat Dakwala, M., Mohanty, B., Bhargava, R.: Simultaneous water and energy conservation through graphical and mathematical programming: a case study for float glass industry. J. Clean. Prod. 78, 15–34 (2014)CrossRef Dakwala, M., Mohanty, B., Bhargava, R.: Simultaneous water and energy conservation through graphical and mathematical programming: a case study for float glass industry. J. Clean. Prod. 78, 15–34 (2014)CrossRef
Metadaten
Titel
Optimal revamp of multi-region carbon capture and storage (CCS) systems by two-step linear optimization
verfasst von
John Frederick D. Tapia
Raymond R. Tan
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Energy Systems / Ausgabe 2/2015
Print ISSN: 1868-3967
Elektronische ISSN: 1868-3975
DOI
https://doi.org/10.1007/s12667-015-0141-0

Weitere Artikel der Ausgabe 2/2015

Energy Systems 2/2015 Zur Ausgabe