Skip to main content
Erschienen in: Fire Technology 5/2019

21.02.2019

Optimal Safe Layout of Fuel Storage Tanks Exposed to Pool Fire: One Dimensional Deterministic Modelling Approach

verfasst von: Angan Sengupta

Erschienen in: Fire Technology | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fire hazard is one of the main risks associated to fuel storage tanks in petroleum and in the petrochemical industries. Such a hazard includes pool fires in the storage tanks or in the bunds, fire propagation from the source tank to target tanks both in absence and in presence of wind, and also the cascading/domino effect due to confined and unconfined vapour cloud explosion and or BLEVE associated with the source tank. In the present work, a radiation shield of flowing water has been introduced at a distance from the source fuel storage tank to prevent the domino effect originating from this source tank, under fire, to the target fuel storage tanks in a tank farm. A simple one dimensional model has been developed from the steady state energy balance to simulate the safe distances (i.e. rim–rim distance) between fuel storage tanks containing class-I fuel (e.g. gasoline), both in presence and absence of a water-shield under no-wind and cross-wind conditions. The model predictions have shown that the maximum safe inter-tank separation distance of 28.42 m is anticipated at a wind velocity of 6 m/s, compared to 16.34 m in no-wind condition, beyond which the centroid of the parallelepiped (a solid-flame geometry) falls outside the base of the tilted flame geometry causing flattening of flame and a very sluggish increase in the flame tilt angle as the inverse of the Richardson number in the presence of wind velocity vector increases. Furthermore, the present one dimensional mathematical model has also been extended to show that introduction of a water-shield with an appropriate thickness (δopt) is able to prevent the propagation of radiation heat flux under both no-wind and cross-wind conditions to a much lower distance close to 8.34 m between tanks (measured from the centre of the source tank), than those predicted from the existing empirical models; viz. Point Source model and Shokrie-Beyler’s model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Abbasi MH, Benhelal E, Ahmad A (2014) Designing an optimal safe layout for a fuel storage tanks farm : case study of Jaipur Oil Depot. Int J Chem Mol Nucl Mater Metall Eng 8:147–155 Abbasi MH, Benhelal E, Ahmad A (2014) Designing an optimal safe layout for a fuel storage tanks farm : case study of Jaipur Oil Depot. Int J Chem Mol Nucl Mater Metall Eng 8:147–155
4.
Zurück zum Zitat Sengupta A, Gupta AK, Mishra IM (2011) Engineering layout of fuel tanks in a tank farm. J Loss Prev Process Ind 24:568–574CrossRef Sengupta A, Gupta AK, Mishra IM (2011) Engineering layout of fuel tanks in a tank farm. J Loss Prev Process Ind 24:568–574CrossRef
5.
Zurück zum Zitat Benedetti RP (2016) Flammable and combustible liquids code. National Fire Protection Association, Quincy Benedetti RP (2016) Flammable and combustible liquids code. National Fire Protection Association, Quincy
6.
Zurück zum Zitat Gorjipour S, Anvaripour B (2014) Safe distance from pools fires in NGL storage tanks in stagnant Air. Int J Basic Sci Appl Res 3:777–780 Gorjipour S, Anvaripour B (2014) Safe distance from pools fires in NGL storage tanks in stagnant Air. Int J Basic Sci Appl Res 3:777–780
7.
Zurück zum Zitat Beer T (1991) The interaction of wind and fire. Bound-Layer Meteorol 54:287–308CrossRef Beer T (1991) The interaction of wind and fire. Bound-Layer Meteorol 54:287–308CrossRef
27.
Zurück zum Zitat Drysdale D (1999) An introduction to fire dynamics, 2nd edn. Wiley, Hoboken Drysdale D (1999) An introduction to fire dynamics, 2nd edn. Wiley, Hoboken
29.
Zurück zum Zitat Koseki H (1999) Large scale pool fires: results of recent experiments. In: Fire safety science sixth international symposium, pp 115–132 Koseki H (1999) Large scale pool fires: results of recent experiments. In: Fire safety science sixth international symposium, pp 115–132
31.
Zurück zum Zitat Cengel YA, Klein S, Beckman W (2002) Heat transfer: a practical approach. McGraw Hill Education, New York Cengel YA, Klein S, Beckman W (2002) Heat transfer: a practical approach. McGraw Hill Education, New York
35.
Zurück zum Zitat Thomas PH (1963) The size of flame from natural fires. Proc Combust Inst 9:844–859CrossRef Thomas PH (1963) The size of flame from natural fires. Proc Combust Inst 9:844–859CrossRef
36.
Zurück zum Zitat Wade DD (2013) Flame descriptors. SFE fact sheet 2013–6, Southern fire exchange, 2 p Wade DD (2013) Flame descriptors. SFE fact sheet 2013–6, Southern fire exchange, 2 p
37.
Zurück zum Zitat Bejan A (2004) Convection heat transfer, 3rd edn. Wiley, HobokenMATH Bejan A (2004) Convection heat transfer, 3rd edn. Wiley, HobokenMATH
39.
Zurück zum Zitat Geankoplis CJ (1993) Transport processes and unit operations, 3rd edn. Prentice-Hall International Inc, Upper Saddle River Geankoplis CJ (1993) Transport processes and unit operations, 3rd edn. Prentice-Hall International Inc, Upper Saddle River
43.
Zurück zum Zitat Koseki H, Yumoto T (1988) Air entrainment from heptane pool fires.pdf. Fire Technology Koseki H, Yumoto T (1988) Air entrainment from heptane pool fires.pdf. Fire Technology
Metadaten
Titel
Optimal Safe Layout of Fuel Storage Tanks Exposed to Pool Fire: One Dimensional Deterministic Modelling Approach
verfasst von
Angan Sengupta
Publikationsdatum
21.02.2019
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 5/2019
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-019-00830-y

Weitere Artikel der Ausgabe 5/2019

Fire Technology 5/2019 Zur Ausgabe