Skip to main content
Erschienen in: Mechanics of Composite Materials 6/2013

01.01.2013

Optimization of fiber-reinforced laminates for a maximum fatigue life by using the particle swarm optimization. Part I

verfasst von: Ahmet H. Ertas

Erschienen in: Mechanics of Composite Materials | Ausgabe 6/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In practice, the problems connected with the fatigue of composites are intricate because of their complex structure and the fatigue loading. Fatigue tests under different fiber orientation angles are time-consuming and also very expensive. Therefore, it is important to establish a technique to consider the fatigue damage at any fiber orientation angle without having to perform excessive amounts of testing. The general purpose is to elaborate a methodology for finding a globally optimum design of composite laminates subjected to in-plane loads. In this part of the study, the Fawaz–Ellyin model of fatigue life prediction is presented and further validated. The results obtained show that the model can be applied to optimization problems of composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. T. Hahn and R. Y. Kim, “Fatigue behavior of composite laminate,” J. Compos. Mater., 10, 156–180 (1976).CrossRef H. T. Hahn and R. Y. Kim, “Fatigue behavior of composite laminate,” J. Compos. Mater., 10, 156–180 (1976).CrossRef
2.
Zurück zum Zitat B. Harris, Fatigue in Composites: Science and Technology of the Fatigue Response of Fibre-Reinforced Plastics. University of Bath, UK: Woodhead Publ. Limited (2008). B. Harris, Fatigue in Composites: Science and Technology of the Fatigue Response of Fibre-Reinforced Plastics. University of Bath, UK: Woodhead Publ. Limited (2008).
3.
Zurück zum Zitat S. Sihn and J. W. Park “MAE: An Integrated Design Tool for Failure and Life Prediction of Composites,” J. Compos. Mater., 42, 1–22 (2008).CrossRef S. Sihn and J. W. Park “MAE: An Integrated Design Tool for Failure and Life Prediction of Composites,” J. Compos. Mater., 42, 1–22 (2008).CrossRef
4.
Zurück zum Zitat K. L. Reifsnider, Fatigue of Composite Materials, Elsevier Sci. Publ. B. V. (1991). K. L. Reifsnider, Fatigue of Composite Materials, Elsevier Sci. Publ. B. V. (1991).
5.
Zurück zum Zitat O. O. Ochoa and J. N. Reddy, Finite Element Analysis of Composite Laminates, Kluwer Academic Publishers (1992). O. O. Ochoa and J. N. Reddy, Finite Element Analysis of Composite Laminates, Kluwer Academic Publishers (1992).
6.
Zurück zum Zitat Z. Fawaz and F. Ellyin, “A new methodology for the prediction of fatigue failure in multidirectional fiber-reinforced laminates,” Compos. Sci. Technol., 53, No. 1, 47–55 (1995).CrossRef Z. Fawaz and F. Ellyin, “A new methodology for the prediction of fatigue failure in multidirectional fiber-reinforced laminates,” Compos. Sci. Technol., 53, No. 1, 47–55 (1995).CrossRef
7.
Zurück zum Zitat Z. Fawaz and F. Ellyin, “Fatigue failure model for fiber-reinforced materials under general loading conditions,” J. Compos. Mater., 28, No. 15, 1432–1451 (1994).CrossRef Z. Fawaz and F. Ellyin, “Fatigue failure model for fiber-reinforced materials under general loading conditions,” J. Compos. Mater., 28, No. 15, 1432–1451 (1994).CrossRef
8.
Zurück zum Zitat W. Hwang, K. S. Han, “Fatigue of composites-fatigue modulus concept and life prediction,” J. Compos. Mater., 20, 154–165 (1986).CrossRef W. Hwang, K. S. Han, “Fatigue of composites-fatigue modulus concept and life prediction,” J. Compos. Mater., 20, 154–165 (1986).CrossRef
9.
Zurück zum Zitat Z. Hashin and A. Rotem, “Fatigue failure criterion for fiber-reinforced materials,” J. Compos. Mater., 7, 448–464 (1973).CrossRef Z. Hashin and A. Rotem, “Fatigue failure criterion for fiber-reinforced materials,” J. Compos. Mater., 7, 448–464 (1973).CrossRef
10.
Zurück zum Zitat I. J. Toth, “Creep and fatigue behavior of unidirectional and cross-plied composites. Composite Materials: Testing and Design,” 1969, ASTM STP 460, pp. 236–253. I. J. Toth, “Creep and fatigue behavior of unidirectional and cross-plied composites. Composite Materials: Testing and Design,” 1969, ASTM STP 460, pp. 236–253.
11.
Zurück zum Zitat J. Awerbuch and H. T. Hahn, “Off-axis fatigue of graphite/epoxy composite. Fatigue of Fibrous Composite Materials,” 1981, ASTM STP 723, pp. 243–273. J. Awerbuch and H. T. Hahn, “Off-axis fatigue of graphite/epoxy composite. Fatigue of Fibrous Composite Materials,” 1981, ASTM STP 723, pp. 243–273.
12.
Zurück zum Zitat H. El-Kadi and F. Ellyin, “Effect of stress ratio on the fatigue of unidirectional glass-fiber epoxy composite laminae,” Composites, 25, No.10, 917–924 (1994).CrossRef H. El-Kadi and F. Ellyin, “Effect of stress ratio on the fatigue of unidirectional glass-fiber epoxy composite laminae,” Composites, 25, No.10, 917–924 (1994).CrossRef
13.
Zurück zum Zitat E. W. Smith, “Cyclic Biaxial Deformation and Failure of a Glass-Fibre-Reinforced Composites,” Ph.D. Thesis, Cambridge University Press, 1976. E. W. Smith, “Cyclic Biaxial Deformation and Failure of a Glass-Fibre-Reinforced Composites,” Ph.D. Thesis, Cambridge University Press, 1976.
14.
Zurück zum Zitat A. Rotem and H.G. Nelson, “Failure of a laminated composite under tension-compression fatigue loading,” Compos. Sci. Technol., 36, No.1, 46–62 (1989).CrossRef A. Rotem and H.G. Nelson, “Failure of a laminated composite under tension-compression fatigue loading,” Compos. Sci. Technol., 36, No.1, 46–62 (1989).CrossRef
15.
Zurück zum Zitat 15 W. Fuqiang and Y. Weixing, “A model of the fatigue life distribution of composite laminates based on their static strength distribution,” Chinese J. Aeronaut., 21, 241–246 (2008).CrossRef 15 W. Fuqiang and Y. Weixing, “A model of the fatigue life distribution of composite laminates based on their static strength distribution,” Chinese J. Aeronaut., 21, 241–246 (2008).CrossRef
16.
Zurück zum Zitat W. F. Wu, L. J. Lee, and S. T. Choi, “A study of fatigue damage and fatigue life of composite laminates,” J. Compos. Mater., 30, No.1, 123–137 (1996).CrossRef W. F. Wu, L. J. Lee, and S. T. Choi, “A study of fatigue damage and fatigue life of composite laminates,” J. Compos. Mater., 30, No.1, 123–137 (1996).CrossRef
17.
Zurück zum Zitat U. Icardi, S. Locatto, and A. Longo, “Assessment of recent theories for predicting failure of composite laminates,” Appl. Mech. Rev., 1–6, 76–86 (2007).CrossRef U. Icardi, S. Locatto, and A. Longo, “Assessment of recent theories for predicting failure of composite laminates,” Appl. Mech. Rev., 1–6, 76–86 (2007).CrossRef
18.
Zurück zum Zitat M. Quaresimin, L. Susmel, and R. Talreja, “Fatigue behaviour and life assessment of composite laminates under multiaxial loadings,” Int. J. Fatigue, 32, No. 1, 2–16 (2010).CrossRef M. Quaresimin, L. Susmel, and R. Talreja, “Fatigue behaviour and life assessment of composite laminates under multiaxial loadings,” Int. J. Fatigue, 32, No. 1, 2–16 (2010).CrossRef
19.
Zurück zum Zitat J. Kennedy and R.C. Eberhart, “Particle swarm optimization,” Proc. the fourth IEEE Int. Conf. on Neural Networks, 1995. p. 1942–1948. J. Kennedy and R.C. Eberhart, “Particle swarm optimization,” Proc. the fourth IEEE Int. Conf. on Neural Networks, 1995. p. 1942–1948.
20.
Zurück zum Zitat F. Ellyin and H. El-Kadi, “A fatigue failure criterion for fiber-reinforced composite laminae,” Compos. Struct., 15, 61–74 (1990).CrossRef F. Ellyin and H. El-Kadi, “A fatigue failure criterion for fiber-reinforced composite laminae,” Compos. Struct., 15, 61–74 (1990).CrossRef
21.
Zurück zum Zitat A. P. Mouritz, “A simple fatigue life model for three-dimensional fiber-polymer composites,” J. Compos. Mater., 40, No.5, 455–469 (2006).CrossRef A. P. Mouritz, “A simple fatigue life model for three-dimensional fiber-polymer composites,” J. Compos. Mater., 40, No.5, 455–469 (2006).CrossRef
22.
Zurück zum Zitat V. M. Harik and T. A. Bogetti, “Low cycle fatigue of composite laminates: A damage-mode-sensitive model,” J. Compos. Mater., 37, No.7, 597–610 (2003).CrossRef V. M. Harik and T. A. Bogetti, “Low cycle fatigue of composite laminates: A damage-mode-sensitive model,” J. Compos. Mater., 37, No.7, 597–610 (2003).CrossRef
23.
Zurück zum Zitat M. Shokrieh and L.B. Lessard, “Progressive fatigue damage modeling of composite materials, part I: Modeling”, J Compos Mater, 34, No. 13, 1056–1080 (2000). M. Shokrieh and L.B. Lessard, “Progressive fatigue damage modeling of composite materials, part I: Modeling”, J Compos Mater, 34, No. 13, 1056–1080 (2000).
24.
Zurück zum Zitat M. Shokrieh and L.B. Lessard, “Multiaxial fatigue behavior of unidirectional plies based on uniaxial fatigue experiments-I. modeling,” Int. J. Fatigue, 19, No.3, 201–207 (1997).CrossRef M. Shokrieh and L.B. Lessard, “Multiaxial fatigue behavior of unidirectional plies based on uniaxial fatigue experiments-I. modeling,” Int. J. Fatigue, 19, No.3, 201–207 (1997).CrossRef
25.
Zurück zum Zitat J. Noda, M. Nakada, and Y. Miyano, “Fatigue life prediction under variable cyclic loading based on statistical linear cumulative damage rule for CFRP laminates,” J. Reinf. Plast. Compos., 26, No.7, 665–680 (2007).CrossRef J. Noda, M. Nakada, and Y. Miyano, “Fatigue life prediction under variable cyclic loading based on statistical linear cumulative damage rule for CFRP laminates,” J. Reinf. Plast. Compos., 26, No.7, 665–680 (2007).CrossRef
26.
Zurück zum Zitat Z.-M. Huang, “Micromechanical life prediction for composite laminates,” Mech. Mater., 33, 185–199 (2001).CrossRef Z.-M. Huang, “Micromechanical life prediction for composite laminates,” Mech. Mater., 33, 185–199 (2001).CrossRef
27.
Zurück zum Zitat J. A. Epaarachchi and P. D. Clausen, “An empirical model for fatigue behavior prediction of glass fibre-reinforced plastic composites for various stress ratios and test frequencies,” Compos. Part A- Appl. S, 34, 313–326 (2003).CrossRef J. A. Epaarachchi and P. D. Clausen, “An empirical model for fatigue behavior prediction of glass fibre-reinforced plastic composites for various stress ratios and test frequencies,” Compos. Part A- Appl. S, 34, 313–326 (2003).CrossRef
28.
Zurück zum Zitat C. Kassapoglou, “Fatigue life prediction of composite structures under constant amplitude loading,” J. Compos. Mater., 41, No.22, 2737–2754 (2007).CrossRef C. Kassapoglou, “Fatigue life prediction of composite structures under constant amplitude loading,” J. Compos. Mater., 41, No.22, 2737–2754 (2007).CrossRef
29.
Zurück zum Zitat Z. Hashin, “Failure criteria for unidirectional fiber composites,” J. Appl. Mech.-T ASME, 47, 329–335 (1980).CrossRef Z. Hashin, “Failure criteria for unidirectional fiber composites,” J. Appl. Mech.-T ASME, 47, 329–335 (1980).CrossRef
30.
Zurück zum Zitat R. Apinis, “Acceleration of fatigue tests of polymer composite materials by using high-frequency loadings,” Mech. Compos. Mater., 40, No. 2, 107–118 (2004).CrossRef R. Apinis, “Acceleration of fatigue tests of polymer composite materials by using high-frequency loadings,” Mech. Compos. Mater., 40, No. 2, 107–118 (2004).CrossRef
31.
Zurück zum Zitat P. P. Oldyrev and R. P. Apinis, “On the influence of loading frequency on the multicycle fatigue of organoplastics,” Mech. Compos. Mater., 4, 629–633 (1983). P. P. Oldyrev and R. P. Apinis, “On the influence of loading frequency on the multicycle fatigue of organoplastics,” Mech. Compos. Mater., 4, 629–633 (1983).
32.
Zurück zum Zitat W. Van Paepegem and J. Degrieck, “Experimental set-up for and numerical modeling of bending fatigue experiments on plain woven glass/epoxy composites,” Compos. Struct., 51, No. 1, 1–8 (2001).CrossRef W. Van Paepegem and J. Degrieck, “Experimental set-up for and numerical modeling of bending fatigue experiments on plain woven glass/epoxy composites,” Compos. Struct., 51, No. 1, 1–8 (2001).CrossRef
33.
Zurück zum Zitat V. A. Limonov, V. G. Perevozchikov, and V. P. Tamuzh, “Fatigue of laminated composites with various reinforcement systems. 1. Experimental results,” Mech. Compos. Mater., 24, No. 5, 585–594 (1988).CrossRef V. A. Limonov, V. G. Perevozchikov, and V. P. Tamuzh, “Fatigue of laminated composites with various reinforcement systems. 1. Experimental results,” Mech. Compos. Mater., 24, No. 5, 585–594 (1988).CrossRef
Metadaten
Titel
Optimization of fiber-reinforced laminates for a maximum fatigue life by using the particle swarm optimization. Part I
verfasst von
Ahmet H. Ertas
Publikationsdatum
01.01.2013
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 6/2013
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-013-9314-x

Weitere Artikel der Ausgabe 6/2013

Mechanics of Composite Materials 6/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.