Skip to main content
Erschienen in: The Journal of Supercomputing 14/2023

21.04.2023

Optimization of tunneling current in ferroelectric tunnel FET using genetic algorithm

verfasst von: Naima Guenifi, Shiromani Balmukund Rahi, Faiza Benmahdi, Houda Chabane

Erschienen in: The Journal of Supercomputing | Ausgabe 14/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tunnel field effect transistor (TFET) is a gate-controlled, quantum FET device, exhibiting band-to-band tunneling (BTBT) transport phenomena with lower subthreshold swing (SS) than bulk MOSFET devices. Low ON-state current (ION) is an inherent problem with TFET devices. Various research groups are working to address the limitations due to low ON-state current and for performance improvement of the device. The work in this paper is an attempt to overcome the low switching current issue by using ferroelectric material (Fe), barium titanate (BaTiO3) in conventional double gate TFET, having Si1-xGex/Si semiconductors configuration. In the proposed TFET device, the high-κ dielectric HfO2 is replaced by BaTiO3, ferroelectric material (Fe) in the source region. The replacement of HfO2 gate materials by BaTiO3 Fe is found to improve ION (~ order of 10−8 A/µm -to-10−5 A/µm). The FeDGTFET device shows ~ 103 times improvement in ION with unaffected IOFF (~ 10−20 A/µm). In circuit and system design figure of merit, optimization is a critical task for designers. The work in this paper is divided into three sections. Initially, two structures based on high-κ, one with only high-κ (HfO2) DGTFET and the other one based on HfO2 and ferroelectric material BaTiO3 (FeDGTFET), are compared. Analysis of the electric parameters of the two structures shows the performance advantage of the structure based on the ferroelectric material. Next, a parametric study of the FeDGTFET structure is performed linking Silvaco Atlas with MATLAB to analyze the electrical parameters of FeDGTFET. Finally, an optimization technique called algorithm genetic ‘AG’ is employed to show enhancement in the ION current from 10−5 to 10−4A/µm without affecting the IOFF.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ilatikhameneh H, Ameen TA, Klimeck G, Appenzeller J, Rahman R (2015) Dielectric engineered tunnel field-effect transistor. IEEE Electron Device Lett 36:1097–1100CrossRef Ilatikhameneh H, Ameen TA, Klimeck G, Appenzeller J, Rahman R (2015) Dielectric engineered tunnel field-effect transistor. IEEE Electron Device Lett 36:1097–1100CrossRef
2.
Zurück zum Zitat Rahi SB, Asthana P, Gupta S (2017) Heterogatejunctionless tunnel field-effect transistor: future of low-power devices. J Comput Electron 16:30–38CrossRef Rahi SB, Asthana P, Gupta S (2017) Heterogatejunctionless tunnel field-effect transistor: future of low-power devices. J Comput Electron 16:30–38CrossRef
3.
Zurück zum Zitat Sedighi B, Hu XS, Liu H, Nahas JJ, Niemier M (2015) Analog circuit design using tunnel-FETs. IEEE Trans Circuits Syst I: Regul Papers 62:39–48CrossRef Sedighi B, Hu XS, Liu H, Nahas JJ, Niemier M (2015) Analog circuit design using tunnel-FETs. IEEE Trans Circuits Syst I: Regul Papers 62:39–48CrossRef
4.
Zurück zum Zitat Rahi SB, Tayal S, Kumar A (2021) Emerging negative capacitance field effect transistor in low power electronics. Microelectron J 116:105242CrossRef Rahi SB, Tayal S, Kumar A (2021) Emerging negative capacitance field effect transistor in low power electronics. Microelectron J 116:105242CrossRef
5.
Zurück zum Zitat Guenifi N, Rahi SB (2022) Low power circuit and system design hierarchy and thermal reliability of tunnel field effect transistor. SILICON 14:3233–3243CrossRef Guenifi N, Rahi SB (2022) Low power circuit and system design hierarchy and thermal reliability of tunnel field effect transistor. SILICON 14:3233–3243CrossRef
6.
Zurück zum Zitat Kobayashi M, Jang K, Ueyama N, Hiramoto T (2017) Negative capacitance for boosting tunnel FET performance. IEEE Trans Nanotechnol 16:253–258CrossRef Kobayashi M, Jang K, Ueyama N, Hiramoto T (2017) Negative capacitance for boosting tunnel FET performance. IEEE Trans Nanotechnol 16:253–258CrossRef
8.
Zurück zum Zitat Shao Y, del Alamo JA (2022) Sub-10-nm diameter vertical nanowire p-type GaSb/InAsSb tunnel FETs. IEEE Electron Device Lett 43:846–849CrossRef Shao Y, del Alamo JA (2022) Sub-10-nm diameter vertical nanowire p-type GaSb/InAsSb tunnel FETs. IEEE Electron Device Lett 43:846–849CrossRef
9.
Zurück zum Zitat Mazumder AAM, Hosen K, Islam MS, Park J (2022) Numerical investigations of nanowire gate-all-around negative capacitance GaAs/InN tunnel FET. IEEE Access 10:30323–30334CrossRef Mazumder AAM, Hosen K, Islam MS, Park J (2022) Numerical investigations of nanowire gate-all-around negative capacitance GaAs/InN tunnel FET. IEEE Access 10:30323–30334CrossRef
10.
Zurück zum Zitat Zhao Y, Liang Z, Huang Q, Wang H, Peng Y, Han G, Huang R (2019) Experimental study on the transient response of negative capacitance tunnel FET. In: Electron Devices Technology and Manufacturing Conference (EDTM), pp 88–90 Zhao Y, Liang Z, Huang Q, Wang H, Peng Y, Han G, Huang R (2019) Experimental study on the transient response of negative capacitance tunnel FET. In: Electron Devices Technology and Manufacturing Conference (EDTM), pp 88–90
11.
Zurück zum Zitat Lee MH, Wei YT, Lin JC, Chen CW, Tu WH, Tang M (2014) Ferroelectric gate tunnel field-effect transistors with low-power steep turn-on. AIP Adv 4:107117CrossRef Lee MH, Wei YT, Lin JC, Chen CW, Tu WH, Tang M (2014) Ferroelectric gate tunnel field-effect transistors with low-power steep turn-on. AIP Adv 4:107117CrossRef
12.
Zurück zum Zitat Luk’yanchuk I, Razumnaya A, Sené A, Tikhonov Y, Vinokur VM (2022) The ferroelectric field-effect transistor with negative capacitance. npj Comput Mater 8:1–8CrossRef Luk’yanchuk I, Razumnaya A, Sené A, Tikhonov Y, Vinokur VM (2022) The ferroelectric field-effect transistor with negative capacitance. npj Comput Mater 8:1–8CrossRef
13.
Zurück zum Zitat Hu VPH, Lin HH, Lin YK, Hu C (2020) Optimization of negative-capacitance vertical-tunnel FET (NCVT-FET). IEEE Trans Electron Devices 67:2593–2599CrossRef Hu VPH, Lin HH, Lin YK, Hu C (2020) Optimization of negative-capacitance vertical-tunnel FET (NCVT-FET). IEEE Trans Electron Devices 67:2593–2599CrossRef
14.
Zurück zum Zitat Saeidi A, Jazaeri F, Bellando F, Stolichnov I, Luong GV, Zhao QT, Ionescu AM (2017) Negative capacitance as performance booster for tunnel FETs and MOSFETs: an experimental study. IEEE Electron Device Lett 38:1485–1488CrossRef Saeidi A, Jazaeri F, Bellando F, Stolichnov I, Luong GV, Zhao QT, Ionescu AM (2017) Negative capacitance as performance booster for tunnel FETs and MOSFETs: an experimental study. IEEE Electron Device Lett 38:1485–1488CrossRef
15.
Zurück zum Zitat Chauhan V, Samajdar DP, Bagga N (2022) Exploration and device optimization of dielectric-ferroelectric sidewall spacer in negative capacitance FinFET. IEEE Trans Electron Devices 69:4717–4724CrossRef Chauhan V, Samajdar DP, Bagga N (2022) Exploration and device optimization of dielectric-ferroelectric sidewall spacer in negative capacitance FinFET. IEEE Trans Electron Devices 69:4717–4724CrossRef
16.
Zurück zum Zitat Lee CC, Hsieh DR, Li SW, Kuo YS, Chao TS (2022) Hysteresis-free gate-all-around stacked poly-Si nanosheet channel ferroelectric HfxZr1-xO2 negative capacitance FETs with internal metal gate and NH3 plasma nitridation. IEEE Trans Electron Devices 69:1512–1518CrossRef Lee CC, Hsieh DR, Li SW, Kuo YS, Chao TS (2022) Hysteresis-free gate-all-around stacked poly-Si nanosheet channel ferroelectric HfxZr1-xO2 negative capacitance FETs with internal metal gate and NH3 plasma nitridation. IEEE Trans Electron Devices 69:1512–1518CrossRef
17.
Zurück zum Zitat Kim H, Kwak B, Kim JH, Kwon D (2022) Frequency doubler based on ferroelectric tunnel field-effect transistor. IEEE Trans Electron Devices 69:4046–4049CrossRef Kim H, Kwak B, Kim JH, Kwon D (2022) Frequency doubler based on ferroelectric tunnel field-effect transistor. IEEE Trans Electron Devices 69:4046–4049CrossRef
18.
Zurück zum Zitat Verhulst AS, Saeidi A, Stolichnov I, Alian A, Iwai H, Collaert N, Ionescu AM (2020) Experimental details of a steep-slope ferroelectric InGaAs tunnel-FET with high-quality PZT and modeling insights in the transient polarization. IEEE Trans Electron Devices 67:377–382CrossRef Verhulst AS, Saeidi A, Stolichnov I, Alian A, Iwai H, Collaert N, Ionescu AM (2020) Experimental details of a steep-slope ferroelectric InGaAs tunnel-FET with high-quality PZT and modeling insights in the transient polarization. IEEE Trans Electron Devices 67:377–382CrossRef
19.
Zurück zum Zitat Elgamal M (2020) A genetic algorithm to optimize the performance of the tunneling field-effect transistor. J Comput Electron 19:1068–1076CrossRef Elgamal M (2020) A genetic algorithm to optimize the performance of the tunneling field-effect transistor. J Comput Electron 19:1068–1076CrossRef
20.
Zurück zum Zitat Elgamal M (2020) The effect of source and drain pocketing on the performance of double-gate tunnelling field-effect transistor. In: Journal of Physics: Conference Series, IOP Publishing, vol 1447, pp 012020 Elgamal M (2020) The effect of source and drain pocketing on the performance of double-gate tunnelling field-effect transistor. In: Journal of Physics: Conference Series, IOP Publishing, vol 1447, pp 012020
21.
Zurück zum Zitat Hyeok K, Lee M, HyukBae J (2020) Application of genetic algorithm for more efficient multi-layer thickness optimization in solar cells. Energies 13:1726CrossRef Hyeok K, Lee M, HyukBae J (2020) Application of genetic algorithm for more efficient multi-layer thickness optimization in solar cells. Energies 13:1726CrossRef
22.
Zurück zum Zitat Basab D, Bhowmick B (2020) Effect of curie temperature on ferroelectric tunnel FET and its RF/analog performance. IEEE Trans Ultrason Ferroelectr Freq Control 68:1437–1441 Basab D, Bhowmick B (2020) Effect of curie temperature on ferroelectric tunnel FET and its RF/analog performance. IEEE Trans Ultrason Ferroelectr Freq Control 68:1437–1441
23.
Zurück zum Zitat Tripathi SL, Sinha SK, Patel GS (2020) Low-power efficient p+ Si0. 7Ge0. 3 pocket Junctionless SGTFET with varying operating conditions. J Electron Mater 49:4291–4299CrossRef Tripathi SL, Sinha SK, Patel GS (2020) Low-power efficient p+ Si0. 7Ge0. 3 pocket Junctionless SGTFET with varying operating conditions. J Electron Mater 49:4291–4299CrossRef
24.
Zurück zum Zitat Tripathi SL, Patel GS (2020) Design of low power Si0. 7Ge0. 3 pocket junction-less tunnel FET using below 5 nm technology. Wirel Pers Commun 111:2167–2176CrossRef Tripathi SL, Patel GS (2020) Design of low power Si0. 7Ge0. 3 pocket junction-less tunnel FET using below 5 nm technology. Wirel Pers Commun 111:2167–2176CrossRef
25.
Zurück zum Zitat Singh G, Intekhab Amin S, Sunny A, Sarin RK (2016) Design of Si0.5Ge0.5 based tunnel field effect transistor and its performance evaluation. J Superlattices Microstruct 92:143–156CrossRef Singh G, Intekhab Amin S, Sunny A, Sarin RK (2016) Design of Si0.5Ge0.5 based tunnel field effect transistor and its performance evaluation. J Superlattices Microstruct 92:143–156CrossRef
26.
Zurück zum Zitat Sahu SA, Goswami R, Mohapatra SK (2020) Characteristic enhancement of hetero dielectric DG TFET using SiGe pocket at source/channel interface: proposal and investigation. SILICON 12:513–520CrossRef Sahu SA, Goswami R, Mohapatra SK (2020) Characteristic enhancement of hetero dielectric DG TFET using SiGe pocket at source/channel interface: proposal and investigation. SILICON 12:513–520CrossRef
27.
Zurück zum Zitat Ye ZG (eds) (2008) Handbook of dielectric, piezoelectric and ferroelectric materials synthesis, properties and applications. Woodhead Publishing and Maney Publishing on behalf of The Institute of Materials, Minerals & Mining CRC Press Boca Raton Boston New York Washington, DC W OODHEAD PUBLISHING LIMITED Cambridge England First published Ye ZG (eds) (2008) Handbook of dielectric, piezoelectric and ferroelectric materials synthesis, properties and applications. Woodhead Publishing and Maney Publishing on behalf of The Institute of Materials, Minerals & Mining CRC Press Boca Raton Boston New York Washington, DC W OODHEAD PUBLISHING LIMITED Cambridge England First published
28.
Zurück zum Zitat Singh KJ, Chauhan N, Bulusu A, Dasgupta S (2022) Physical cause and impact of negative capacitance effect in ferroelectric P (VDF-TrFE) gate stack and its application to landau transistor. IEEE Open J Ultrason Ferroelectr Freq Control 2:55–64CrossRef Singh KJ, Chauhan N, Bulusu A, Dasgupta S (2022) Physical cause and impact of negative capacitance effect in ferroelectric P (VDF-TrFE) gate stack and its application to landau transistor. IEEE Open J Ultrason Ferroelectr Freq Control 2:55–64CrossRef
32.
Zurück zum Zitat Guenifi N, Rahi SB, Benmahdi F, Chabane H (2023) Optimization for device figure of merit of ferroelectric tunnel FET using genetic algorithm. ECS J Solid State Sci Technol 12(2):023001CrossRef Guenifi N, Rahi SB, Benmahdi F, Chabane H (2023) Optimization for device figure of merit of ferroelectric tunnel FET using genetic algorithm. ECS J Solid State Sci Technol 12(2):023001CrossRef
33.
34.
Zurück zum Zitat Albadr MS, Tiun S, Ayob M, Farhad Dhief F (2020) Genetic algorithm based on natural selection theory for optimization problems. Symmetry 12:1758CrossRef Albadr MS, Tiun S, Ayob M, Farhad Dhief F (2020) Genetic algorithm based on natural selection theory for optimization problems. Symmetry 12:1758CrossRef
Metadaten
Titel
Optimization of tunneling current in ferroelectric tunnel FET using genetic algorithm
verfasst von
Naima Guenifi
Shiromani Balmukund Rahi
Faiza Benmahdi
Houda Chabane
Publikationsdatum
21.04.2023
Verlag
Springer US
Erschienen in
The Journal of Supercomputing / Ausgabe 14/2023
Print ISSN: 0920-8542
Elektronische ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-023-05240-0

Weitere Artikel der Ausgabe 14/2023

The Journal of Supercomputing 14/2023 Zur Ausgabe

Premium Partner