Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 2/2013

01.02.2013 | Industrial Application

Optimization of variable blank holder force trajectory for springback reduction via sequential approximate optimization with radial basis function network

verfasst von: Satoshi Kitayama, Suisheng Huang, Koetsu Yamazaki

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 2/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Springback is one of the major defects in sheet metal forming. Variable blank holder force (VBHF) approach is one of the effective ways for the springback reduction. In this paper, the VBHF trajectory is optimized to reduce the springback by a sequential approximate optimization (SAO) with radial basis function (RBF) network. The U-shaped forming in NUMISHEET’93 is employed to determine an optimum VBHF trajectory, for example. In this paper, the bending moment is taken as the objective function. The tearing of sheet during the forming is considered as the design constraint, and the forming limit diagram (FLD) is employed to evaluate the design constraint quantitatively. It has been found from numerical results that the optimal VBHF trajectory can drastically reduce the springback in comparison with various VBHF trajectories. Through the theoretical examination and numerical simulation, the springback reduction of metal forming by the VBHF trajectory is discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bonte MHA, van den Boogaard AH, Huetink J (2008) An optimization strategy for industrial metal forming processes. Struct Multidisc Optim 35:571–586CrossRef Bonte MHA, van den Boogaard AH, Huetink J (2008) An optimization strategy for industrial metal forming processes. Struct Multidisc Optim 35:571–586CrossRef
Zurück zum Zitat Bonte MHA, Fourment L, Do TT, van den Boogaard AH, Huetink J (2010) Optimization of forging processes using finite element simulations. Struct Multidisc Optim 42:797–810CrossRef Bonte MHA, Fourment L, Do TT, van den Boogaard AH, Huetink J (2010) Optimization of forging processes using finite element simulations. Struct Multidisc Optim 42:797–810CrossRef
Zurück zum Zitat Cao J, Kinsey B, Solla SA (2000) Consistent and minimal springback using a stepped binder force trajectory and neural network control. J Eng Mater Technol 122:113–118CrossRef Cao J, Kinsey B, Solla SA (2000) Consistent and minimal springback using a stepped binder force trajectory and neural network control. J Eng Mater Technol 122:113–118CrossRef
Zurück zum Zitat Choi KK, Kim NH (2002) Design optimization of springback in a deepdrawing process. AIAA J 40(1):147–153CrossRef Choi KK, Kim NH (2002) Design optimization of springback in a deepdrawing process. AIAA J 40(1):147–153CrossRef
Zurück zum Zitat Chou IN, Hung C (1999) Finite element analysis and optimization on springback reduction. Int J Mach Tools Manuf 39:517–536CrossRef Chou IN, Hung C (1999) Finite element analysis and optimization on springback reduction. Int J Mach Tools Manuf 39:517–536CrossRef
Zurück zum Zitat Hillmann M, Kubli W (1999) Optimization of sheet metal forming processes using simulation programs. In: Numisheet ’99, Beasnc, France, vol 1, pp 287–292 Hillmann M, Kubli W (1999) Optimization of sheet metal forming processes using simulation programs. In: Numisheet ’99, Beasnc, France, vol 1, pp 287–292
Zurück zum Zitat Ingaroa G, Di Lorenzo R (2009) Analysis of stamping performances of dual phase steels: a multi-objective approach to reduce springback and thinning failure. Mater Des 30:4421–4433CrossRef Ingaroa G, Di Lorenzo R (2009) Analysis of stamping performances of dual phase steels: a multi-objective approach to reduce springback and thinning failure. Mater Des 30:4421–4433CrossRef
Zurück zum Zitat Ingarao G, Di Lorenzo R (2010) Optimization methods for complex sheet metal stamping computer aided engineering. Struct Multidisc Optim 42:459–480CrossRef Ingarao G, Di Lorenzo R (2010) Optimization methods for complex sheet metal stamping computer aided engineering. Struct Multidisc Optim 42:459–480CrossRef
Zurück zum Zitat Jakumeit J, Herdy M, Nitsche M (2005) Parameter optimization of the sheet metal forming process using an iterative parallel Kriging algorithm. Struct Multidisc Optim 29:498–507CrossRef Jakumeit J, Herdy M, Nitsche M (2005) Parameter optimization of the sheet metal forming process using an iterative parallel Kriging algorithm. Struct Multidisc Optim 29:498–507CrossRef
Zurück zum Zitat Jiang C, Han X, Liu GR, Li GY (2007) The optimization of the variable binder force in U-shaped forming with uncertain friction coefficient. J Mater Process Technol 182:262–267CrossRef Jiang C, Han X, Liu GR, Li GY (2007) The optimization of the variable binder force in U-shaped forming with uncertain friction coefficient. J Mater Process Technol 182:262–267CrossRef
Zurück zum Zitat Kitayama S, Arakawa M, Yamazaki K (2011) Sequential approximate optimization using radial basis function network for engineering optimization. Optim Eng 12(4):535–557MathSciNetCrossRef Kitayama S, Arakawa M, Yamazaki K (2011) Sequential approximate optimization using radial basis function network for engineering optimization. Optim Eng 12(4):535–557MathSciNetCrossRef
Zurück zum Zitat Lee SW, Yang DY (1998) An assessment of numerical parameters influencing springback in explicit finite element analysis of sheet metal forming process. J Mater Process Technol 80–81:60–67CrossRef Lee SW, Yang DY (1998) An assessment of numerical parameters influencing springback in explicit finite element analysis of sheet metal forming process. J Mater Process Technol 80–81:60–67CrossRef
Zurück zum Zitat Lepadatu D, Hambli R, Kobi A, Barreau A (2005) Optimisation of springback in bending processes using FEM simulation and response surface. Int J Adv Manuf Technol 25:40–47CrossRef Lepadatu D, Hambli R, Kobi A, Barreau A (2005) Optimisation of springback in bending processes using FEM simulation and response surface. Int J Adv Manuf Technol 25:40–47CrossRef
Zurück zum Zitat Liu G, Lin Z, Bao Y, Cao J (2002a) Eliminating springback error in U-shaped part forming by variable blank holder force. J Mater Eng Perform 11(1):64–70CrossRef Liu G, Lin Z, Bao Y, Cao J (2002a) Eliminating springback error in U-shaped part forming by variable blank holder force. J Mater Eng Perform 11(1):64–70CrossRef
Zurück zum Zitat Liu G, Lin Z, Xu W, Bao Y (2002b) Variable blankholer force in U-shaped part forming for eliminating springback error. J Mater Process Technol 120:259–264CrossRef Liu G, Lin Z, Xu W, Bao Y (2002b) Variable blankholer force in U-shaped part forming for eliminating springback error. J Mater Process Technol 120:259–264CrossRef
Zurück zum Zitat Naceur H, Guo YQ, Ben-Elechi S (2006) Response surface methodology for design of sheet forming parameters to control springback effects. Comput Struct 84:1651–1663CrossRef Naceur H, Guo YQ, Ben-Elechi S (2006) Response surface methodology for design of sheet forming parameters to control springback effects. Comput Struct 84:1651–1663CrossRef
Zurück zum Zitat Papeleux L, Ponthot JP (2002) Finite element simulation of springback in sheet metal forming. J Mater Process Technol 125–126:785–791CrossRef Papeleux L, Ponthot JP (2002) Finite element simulation of springback in sheet metal forming. J Mater Process Technol 125–126:785–791CrossRef
Zurück zum Zitat Song JH, Huh H, Kim SH (2007) Stress-based springback reduction of a channel shaped auto-body part with high-strength steel using response surface methodology. J Eng Mater Technol 129:397–406CrossRef Song JH, Huh H, Kim SH (2007) Stress-based springback reduction of a channel shaped auto-body part with high-strength steel using response surface methodology. J Eng Mater Technol 129:397–406CrossRef
Zurück zum Zitat Sunseri M, Cao J, Karafillis AP, Boyce MC (1996) Accommodation of springback error in channel forming using active binder force control: numerical simulation and experiments. J Eng Mater Technol 118:426–435CrossRef Sunseri M, Cao J, Karafillis AP, Boyce MC (1996) Accommodation of springback error in channel forming using active binder force control: numerical simulation and experiments. J Eng Mater Technol 118:426–435CrossRef
Zurück zum Zitat Tozawa Y (1965) Theoretical analysis on springback of thin plate. J Jpn Soc Mech Eng 68(559):1090–1097 Tozawa Y (1965) Theoretical analysis on springback of thin plate. J Jpn Soc Mech Eng 68(559):1090–1097
Zurück zum Zitat Viswanathan V, Kinsey B, Cao J (2003) Experimental implementation of neural network springback control for sheet metal forming. J Eng Mater Technol 125:141–147CrossRef Viswanathan V, Kinsey B, Cao J (2003) Experimental implementation of neural network springback control for sheet metal forming. J Eng Mater Technol 125:141–147CrossRef
Zurück zum Zitat Wang H, Li E, Li GY (2008a) Optimization of drawbead design in sheet metal forming based on intelligent sampling by using response surface methodology. J Mater Process Technol 206:45–55CrossRef Wang H, Li E, Li GY (2008a) Optimization of drawbead design in sheet metal forming based on intelligent sampling by using response surface methodology. J Mater Process Technol 206:45–55CrossRef
Zurück zum Zitat Wang H, Li GY, Zhong ZH (2008b) Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method. J Mater Process Technol 197:77–88CrossRef Wang H, Li GY, Zhong ZH (2008b) Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method. J Mater Process Technol 197:77–88CrossRef
Zurück zum Zitat Wang H, Li E, Li GY (2010) Parallel boundary and best neighbor searching sampling algorithm for drawbead design optimization in sheet metal forming. Struct Multidisc Optim 41:309–324CrossRef Wang H, Li E, Li GY (2010) Parallel boundary and best neighbor searching sampling algorithm for drawbead design optimization in sheet metal forming. Struct Multidisc Optim 41:309–324CrossRef
Zurück zum Zitat Xu WL, Ma CH, Li CH, Feng WJ (2004) Sensitive factors in springback simulation for sheet metal forming. J Mater Technol 151:217–222CrossRef Xu WL, Ma CH, Li CH, Feng WJ (2004) Sensitive factors in springback simulation for sheet metal forming. J Mater Technol 151:217–222CrossRef
Metadaten
Titel
Optimization of variable blank holder force trajectory for springback reduction via sequential approximate optimization with radial basis function network
verfasst von
Satoshi Kitayama
Suisheng Huang
Koetsu Yamazaki
Publikationsdatum
01.02.2013
Verlag
Springer-Verlag
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 2/2013
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-012-0824-2

Weitere Artikel der Ausgabe 2/2013

Structural and Multidisciplinary Optimization 2/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.