Skip to main content

23.04.2024 | Original Paper

Optimized fuzzy type 1 Mamdani controller to enhance transient stability of AC-power system

verfasst von: V. Suryanarayana Reddy, A. S. Kannan

Erschienen in: Wireless Networks

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The dynamic behaviour of the system in power system networks is nonlinear. Due to heavy load and technical advancement, it faces several difficulties. One of the most significant factors that have a detrimental effect on the electrical network is instability in the voltage. By preserving the system voltage and removing voltage fluctuations, this work proposes the fuzzy Mamdani controller and increases voltage stability. The suggested fuzzy controller takes the place of the current PI regulator and allows for improved voltage regulation and disturbance compensation utilizing TSO (Tuna Swarm Optimization). The team-based foraging behaviour of tuna swarms served as the primary source of motivation for TSO. The work uses two tuna swarm foraging strategies—spiral foraging and parabolic foraging—as models to create an efficient metaheuristic algorithm. TSO's performance is assessed concerning many actual technical problems. As a result, non-linear power quality issues are resolved by applying the static Var compensator (SVC)-based fuzzy Mamdani approach with the TSO algorithm. The IEEE-39 bus system is used to analyse and assess the recommended approach, and it is compared to previous research. The decrease of the error in the stable state of voltage at the buses and the highest possible voltage loss that takes place following the development of a defect established the effectiveness of the proposed approach for minimizing oscillations in voltage and harmonic flows. Simulations show how well the reactive power replacement and voltage regulation work using the fuzzy Mamdani controllers that have been built in MATLAB/SIMULINK.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chakraborty, S., Mukhopadhyay, S., & Biswas, S. K. (2021). Coordination of D-STATCOM & SVC for dynamic VAR compensation and voltage stabilization of an AC grid interconnected to a DC microgrid. IEEE Transactions on Industry Applications, 58(1), 634–644.CrossRef Chakraborty, S., Mukhopadhyay, S., & Biswas, S. K. (2021). Coordination of D-STATCOM & SVC for dynamic VAR compensation and voltage stabilization of an AC grid interconnected to a DC microgrid. IEEE Transactions on Industry Applications, 58(1), 634–644.CrossRef
2.
Zurück zum Zitat Sakipour, R., & Abdi, H. (2022). Voltage stability improvement of wind farms by self-correcting static volt-ampere reactive compensator and energy storage. International Journal of Electrical Power & Energy Systems, 140, 108082.CrossRef Sakipour, R., & Abdi, H. (2022). Voltage stability improvement of wind farms by self-correcting static volt-ampere reactive compensator and energy storage. International Journal of Electrical Power & Energy Systems, 140, 108082.CrossRef
3.
Zurück zum Zitat Elsisi, M., Bazmohammadi, N., Guerrero, J. M., & Ebrahim, M. A. (2021). Energy management of controllable loads in multi-area power systems with wind power penetration based on new supervisor fuzzy nonlinear sliding mode control. Energy, 221, 119867.CrossRef Elsisi, M., Bazmohammadi, N., Guerrero, J. M., & Ebrahim, M. A. (2021). Energy management of controllable loads in multi-area power systems with wind power penetration based on new supervisor fuzzy nonlinear sliding mode control. Energy, 221, 119867.CrossRef
4.
Zurück zum Zitat Ansari, J., Abbasi, A. R., Heydari, M. H., & Avazzadeh, Z. (2022). Simultaneous design of fuzzy PSS and fuzzy STATCOM controllers for power system stability enhancement. Alexandria Engineering Journal, 61(4), 2841–2850.CrossRef Ansari, J., Abbasi, A. R., Heydari, M. H., & Avazzadeh, Z. (2022). Simultaneous design of fuzzy PSS and fuzzy STATCOM controllers for power system stability enhancement. Alexandria Engineering Journal, 61(4), 2841–2850.CrossRef
5.
Zurück zum Zitat Khamies, M., Magdy, G., Ebeed, M., & Kamel, S. (2021). A robust PID controller based on linear quadratic gaussian approach for improving frequency stability of power systems considering renewables. ISA transactions, 117, 118–138.CrossRef Khamies, M., Magdy, G., Ebeed, M., & Kamel, S. (2021). A robust PID controller based on linear quadratic gaussian approach for improving frequency stability of power systems considering renewables. ISA transactions, 117, 118–138.CrossRef
6.
Zurück zum Zitat Vetoshkin, L., & Müller, Z. (2021). Dynamic stability improvement of power system by means of STATCOM with virtual inertia. IEEE Access, 9, 116105–116114.CrossRef Vetoshkin, L., & Müller, Z. (2021). Dynamic stability improvement of power system by means of STATCOM with virtual inertia. IEEE Access, 9, 116105–116114.CrossRef
7.
Zurück zum Zitat Li, C., Huang, Y., Deng, H., Zhang, X., & Zhao, H. (2022). A novel grid-forming technology for transient stability enhancement of power system with high penetration of renewable energy. International Journal of Electrical Power & Energy Systems, 143, 108402.CrossRef Li, C., Huang, Y., Deng, H., Zhang, X., & Zhao, H. (2022). A novel grid-forming technology for transient stability enhancement of power system with high penetration of renewable energy. International Journal of Electrical Power & Energy Systems, 143, 108402.CrossRef
8.
Zurück zum Zitat Mansour, M. Z., Me, S. P., Hadavi, S., Badrzadeh, B., Karimi, A., & Bahrani, B. (2021). Nonlinear transient stability analysis of phased-locked loop-based grid-following voltage-source converters using Lyapunov’s direct method. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(3), 2699–2709.CrossRef Mansour, M. Z., Me, S. P., Hadavi, S., Badrzadeh, B., Karimi, A., & Bahrani, B. (2021). Nonlinear transient stability analysis of phased-locked loop-based grid-following voltage-source converters using Lyapunov’s direct method. IEEE Journal of Emerging and Selected Topics in Power Electronics, 10(3), 2699–2709.CrossRef
9.
Zurück zum Zitat Dandotia, A., Gupta, M. K., Banerjee, M. K., Singh, S. K., Đurin, B., Dogančić, D., & Kranjčić, N. (2023). Optimal placement and size of SVC with cost-effective function using genetic algorithm for voltage profile improvement in renewable integrated power systems. Energies, 16(6), 2637.CrossRef Dandotia, A., Gupta, M. K., Banerjee, M. K., Singh, S. K., Đurin, B., Dogančić, D., & Kranjčić, N. (2023). Optimal placement and size of SVC with cost-effective function using genetic algorithm for voltage profile improvement in renewable integrated power systems. Energies, 16(6), 2637.CrossRef
10.
Zurück zum Zitat Agustini, N. P., Wartana, I. M., & Lomi, A. (2021). Improvement of static voltage stability of 16-bus bali system by optimal placement of SVC. International Journal of Smart Grid and Sustainable Energy Technologies, 4(1), 140–144.CrossRef Agustini, N. P., Wartana, I. M., & Lomi, A. (2021). Improvement of static voltage stability of 16-bus bali system by optimal placement of SVC. International Journal of Smart Grid and Sustainable Energy Technologies, 4(1), 140–144.CrossRef
11.
Zurück zum Zitat Mahobia, M. R. P., & Sahu, M. A. (2022). IEEE 9 bus power system stability improvement with facts devices. Journal of Optoelectronics Laser, 41(5), 637–644. Mahobia, M. R. P., & Sahu, M. A. (2022). IEEE 9 bus power system stability improvement with facts devices. Journal of Optoelectronics Laser, 41(5), 637–644.
12.
Zurück zum Zitat Nafeh, A. A., Heikal, A., El-Sehiemy, R. A., & Salem, W. A. (2022). Intelligent fuzzy-based controllers for voltage stability enhancement of AC-DC micro-grid with D-STATCOM. Alexandria Engineering Journal, 61(3), 2260–2293.CrossRef Nafeh, A. A., Heikal, A., El-Sehiemy, R. A., & Salem, W. A. (2022). Intelligent fuzzy-based controllers for voltage stability enhancement of AC-DC micro-grid with D-STATCOM. Alexandria Engineering Journal, 61(3), 2260–2293.CrossRef
13.
Zurück zum Zitat Saleem, B., Badar, R., Manzoor, A., Judge, M. A., Boudjadar, J., & Islam, S. U. (2022). Fully adaptive recurrent Neuro-fuzzy control for power system stability enhancement in multi machine system. IEEE Access, 10, 36464–36476.CrossRef Saleem, B., Badar, R., Manzoor, A., Judge, M. A., Boudjadar, J., & Islam, S. U. (2022). Fully adaptive recurrent Neuro-fuzzy control for power system stability enhancement in multi machine system. IEEE Access, 10, 36464–36476.CrossRef
14.
Zurück zum Zitat Al-Khayyat, M. T., & Suliman, M. Y. (2021). Neuro fuzzy based SSSC for active and reactive power control in AC lines with reduced oscillation. Przeglad Elektrotechniczny, 97(3), 75–79. Al-Khayyat, M. T., & Suliman, M. Y. (2021). Neuro fuzzy based SSSC for active and reactive power control in AC lines with reduced oscillation. Przeglad Elektrotechniczny, 97(3), 75–79.
15.
Zurück zum Zitat Alsammak, A. N., & Mohammed, H. A. (2021). Power quality improvement using fuzzy logic controller based unified power flow controller (UPFC). Indonesian Journal of Electrical Engineering and Computer Science, 21(1), 1–9.CrossRef Alsammak, A. N., & Mohammed, H. A. (2021). Power quality improvement using fuzzy logic controller based unified power flow controller (UPFC). Indonesian Journal of Electrical Engineering and Computer Science, 21(1), 1–9.CrossRef
16.
Zurück zum Zitat Pandian, A. N., & Palanivelu, A. (2021). Metaheuristic optimization based placement of SVCs with multiple objectives. Journal of Engineering, Design and Technology, 19(6), 1586–1600.CrossRef Pandian, A. N., & Palanivelu, A. (2021). Metaheuristic optimization based placement of SVCs with multiple objectives. Journal of Engineering, Design and Technology, 19(6), 1586–1600.CrossRef
17.
Zurück zum Zitat Sayed, F., Kamel, S., Taher, M. A., & Jurado, F. (2021). Enhancing power system loadability and optimal load shedding based on TCSC allocation using improved moth flame optimization algorithm. Electrical Engineering, 103, 205–225.CrossRef Sayed, F., Kamel, S., Taher, M. A., & Jurado, F. (2021). Enhancing power system loadability and optimal load shedding based on TCSC allocation using improved moth flame optimization algorithm. Electrical Engineering, 103, 205–225.CrossRef
18.
Zurück zum Zitat Sadeghi, D., Amiri, N., Marzband, M., Abusorrah, A., & Sedraoui, K. (2022). Optimal sizing of hybrid renewable energy systems by considering power sharing and electric vehicles. International Journal of Energy Research, 46(6), 8288–8312.CrossRef Sadeghi, D., Amiri, N., Marzband, M., Abusorrah, A., & Sedraoui, K. (2022). Optimal sizing of hybrid renewable energy systems by considering power sharing and electric vehicles. International Journal of Energy Research, 46(6), 8288–8312.CrossRef
19.
Zurück zum Zitat Shehata, A. A., Refaat, A., Ahmed, M. K., & Korovkin, N. V. (2021). Optimal placement and sizing of FACTS devices based on autonomous groups particle swarm optimization technique. Archives of Electrical Engineering, 70(1), 161–172. Shehata, A. A., Refaat, A., Ahmed, M. K., & Korovkin, N. V. (2021). Optimal placement and sizing of FACTS devices based on autonomous groups particle swarm optimization technique. Archives of Electrical Engineering, 70(1), 161–172.
20.
Zurück zum Zitat Shekarappa, G. S., Mahapatra, S., & Raj, S. (2021). Voltage constrained reactive power planning problem for reactive loading variation using hybrid harris hawk particle swarm optimizer. Electric Power Components and Systems, 49(4–5), 421–4354.CrossRef Shekarappa, G. S., Mahapatra, S., & Raj, S. (2021). Voltage constrained reactive power planning problem for reactive loading variation using hybrid harris hawk particle swarm optimizer. Electric Power Components and Systems, 49(4–5), 421–4354.CrossRef
21.
Zurück zum Zitat Attia, A. F., & Sharaf, A. M. (2020). A robust FACTS based fuzzy control scheme for dynamic stabilization of generator station. Ain Shams Engineering Journal, 11(3), 629–641.CrossRef Attia, A. F., & Sharaf, A. M. (2020). A robust FACTS based fuzzy control scheme for dynamic stabilization of generator station. Ain Shams Engineering Journal, 11(3), 629–641.CrossRef
22.
Zurück zum Zitat Garrido, C., AguilaTéllez, A., & Ortiz, L. (2022). Linear voltage stability indicator (Lvsi) for optimal placement of svc devices to improve the voltage stability margin in transmission systems. Electronics, 12(1), 43.CrossRef Garrido, C., AguilaTéllez, A., & Ortiz, L. (2022). Linear voltage stability indicator (Lvsi) for optimal placement of svc devices to improve the voltage stability margin in transmission systems. Electronics, 12(1), 43.CrossRef
23.
Zurück zum Zitat Hassan, M. M., Sun, X., & Ate, A. (2020). FLC based on static var compensator for power system transient stability enhancement. TELKOMNIKA (Telecommunication Computing Electronics and Control), 18(5), 2665–2673.CrossRef Hassan, M. M., Sun, X., & Ate, A. (2020). FLC based on static var compensator for power system transient stability enhancement. TELKOMNIKA (Telecommunication Computing Electronics and Control), 18(5), 2665–2673.CrossRef
24.
Zurück zum Zitat Adewuyi, O. B., Folly, K. A., Oyedokun, D. T., & Ogunwole, E. I. (2022). Power system voltage stability margin estimation using adaptive neuro-fuzzy Inference system enhanced with particle swarm optimization. Sustainability, 14(22), 15448.CrossRef Adewuyi, O. B., Folly, K. A., Oyedokun, D. T., & Ogunwole, E. I. (2022). Power system voltage stability margin estimation using adaptive neuro-fuzzy Inference system enhanced with particle swarm optimization. Sustainability, 14(22), 15448.CrossRef
25.
Zurück zum Zitat Paital, S. R., Ray, P. K., Mohanty, S. R., & Mohanty, A. (2021). An adaptive fractional fuzzy sliding mode controlled PSS for transient stability improvement under different system uncertainties. IET smart grid, 4(1), 61–75.CrossRef Paital, S. R., Ray, P. K., Mohanty, S. R., & Mohanty, A. (2021). An adaptive fractional fuzzy sliding mode controlled PSS for transient stability improvement under different system uncertainties. IET smart grid, 4(1), 61–75.CrossRef
26.
Zurück zum Zitat Zaidan, M. R. (2020). Improvement of transient voltage stability in power system using shunt-connected facts devices. Solid State Technology, 63(6), 22923–22932. Zaidan, M. R. (2020). Improvement of transient voltage stability in power system using shunt-connected facts devices. Solid State Technology, 63(6), 22923–22932.
27.
Zurück zum Zitat Naderipour, A., Abdul-Malek, Z., Gandoman, F. H., Nowdeh, S. A., Shiran, M. A., Moghaddam, M. J. H., & Davoodkhani, I. F. (2020). Optimal designing of static var compensator to improve voltage profile of power system using fuzzy logic control. Energy, 192, 116665.CrossRef Naderipour, A., Abdul-Malek, Z., Gandoman, F. H., Nowdeh, S. A., Shiran, M. A., Moghaddam, M. J. H., & Davoodkhani, I. F. (2020). Optimal designing of static var compensator to improve voltage profile of power system using fuzzy logic control. Energy, 192, 116665.CrossRef
28.
Zurück zum Zitat Xie, L., Han, T., Zhou, H., Zhang, Z. R., Han, B., & Tang, A. (2021). Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization. Computational intelligence and Neuroscience, 2021, 1–22. Xie, L., Han, T., Zhou, H., Zhang, Z. R., Han, B., & Tang, A. (2021). Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization. Computational intelligence and Neuroscience, 2021, 1–22.
29.
Zurück zum Zitat Mohamed, M., Merzoug, Y., & Sami, B. (2022). New strategy to enhance AC grid performance with SVC device in an optimal location. Journal of Ambient Intelligence and Humanized Computing, 13(12), 5873–5884.CrossRef Mohamed, M., Merzoug, Y., & Sami, B. (2022). New strategy to enhance AC grid performance with SVC device in an optimal location. Journal of Ambient Intelligence and Humanized Computing, 13(12), 5873–5884.CrossRef
30.
Zurück zum Zitat Yarlagadda, V., Lakshminarayana, G., Ambati, G., Nireekshana, T., & Karthika, G. A. (2022). Mitigation of Ferranti effect and voltage control in transmission systems using fuzzy logic controlled SVC. In 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN) (pp. 1-6). IEEE. Yarlagadda, V., Lakshminarayana, G., Ambati, G., Nireekshana, T., & Karthika, G. A. (2022). Mitigation of Ferranti effect and voltage control in transmission systems using fuzzy logic controlled SVC. In 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN) (pp. 1-6). IEEE.
31.
Zurück zum Zitat Miranda, C. R., de Campos, F. P., & Ribeiro, M. V. (2021). Energy reliability in macro base stations: A feasible solution based on a type-1 Mamdani fuzzy system. Electric Power Systems Research, 195, 107126.CrossRef Miranda, C. R., de Campos, F. P., & Ribeiro, M. V. (2021). Energy reliability in macro base stations: A feasible solution based on a type-1 Mamdani fuzzy system. Electric Power Systems Research, 195, 107126.CrossRef
32.
Zurück zum Zitat Wang, W., & Tian, J. (2022). An improved nonlinear tuna swarm optimization algorithm based on circle chaos map and levy flight operator. Electronics, 11(22), 3678.CrossRef Wang, W., & Tian, J. (2022). An improved nonlinear tuna swarm optimization algorithm based on circle chaos map and levy flight operator. Electronics, 11(22), 3678.CrossRef
Metadaten
Titel
Optimized fuzzy type 1 Mamdani controller to enhance transient stability of AC-power system
verfasst von
V. Suryanarayana Reddy
A. S. Kannan
Publikationsdatum
23.04.2024
Verlag
Springer US
Erschienen in
Wireless Networks
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-024-03738-w

Neuer Inhalt