Skip to main content
Erschienen in: Optical and Quantum Electronics 11/2016

01.11.2016

Optimizing of the novel asymmetric plasmonic waveguide with two identical gratings to increase the SHG efficiency

verfasst von: Mohammad Yazdanypoor, Farzin Emami

Erschienen in: Optical and Quantum Electronics | Ausgabe 11/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper a novel plasmonic waveguide is proposed to increase the second harmonic generation (SHG) efficiency by considering asymmetric plasmonic waveguide geometry and two identical grating separated with each other by spacing. The proposed structure consists of two different metals on both sides of lithium niobate. By using two different metals the nonlinear susceptibility of the waveguide would be increased noticeably causing to increase SHG process. On the other hand, it consists of two identical gratings on one side. By two identical gratings, the pump beam is coupled to two opposing SPP waves, which interfere with each other and results in SPP standing wave in the region between the two gratings. The needed phase matching condition is satisfied between the fundamental waveguide mode at the fundamental frequency and second order waveguide mode at the second harmonic frequency (SHF) by an appropriate design of the waveguide geometrical parameters. The details of structure including the metals of top and bottom, distance between two gratings, depth, and the duty cycle of gratings will be optimized to reach the highest SHG efficiency and the highest SHF optical power. It will be shown that by optimizing the geometry of proposed structure and using different metals, field enhancement in proposed waveguide can result in large enhancement of SHG. The SHG signal generated in proposed waveguide is more than four orders of magnitude higher than those previously reported. The device length is shorter than 3 µm and the normalized SHG conversion efficiency comes up to more than 9 × 107 W−1 cm−2.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ashkin, A., Boyd, G.D., Dziedzic, J.M., Smith, R.G., Ballman, A.A., Levinstein, J.J., Nassau, K.: Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3. Appl. Phys. Lett. 9(1), 72–74 (1966)ADSCrossRef Ashkin, A., Boyd, G.D., Dziedzic, J.M., Smith, R.G., Ballman, A.A., Levinstein, J.J., Nassau, K.: Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3. Appl. Phys. Lett. 9(1), 72–74 (1966)ADSCrossRef
Zurück zum Zitat Biris, C.G., Panoiu, N.C. Second harmonic generation in metamaterials based on homogeneous centrosymmetric nanowires. Phys. Rev. B 81(19), 195102 (2010)ADSCrossRef Biris, C.G., Panoiu, N.C. Second harmonic generation in metamaterials based on homogeneous centrosymmetric nanowires. Phys. Rev. B 81(19), 195102 (2010)ADSCrossRef
Zurück zum Zitat Boyd, R.W.: Nonlinear Optics. Academic, New York (2008) Boyd, R.W.: Nonlinear Optics. Academic, New York (2008)
Zurück zum Zitat Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Laluet, J.Y., Ebbesen, T.W.: Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006)ADSCrossRef Bozhevolnyi, S.I., Volkov, V.S., Devaux, E., Laluet, J.Y., Ebbesen, T.W.: Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006)ADSCrossRef
Zurück zum Zitat Brongersma, M.L., Kik, P.G.: Surface Plasmon Nanophotonics. Springer, New York (2007)CrossRef Brongersma, M.L., Kik, P.G.: Surface Plasmon Nanophotonics. Springer, New York (2007)CrossRef
Zurück zum Zitat Cai, W.S., Vasudev, A.P., Brongersma, M.L.: Electrically controlled nonlinear generation of light with plasmonics. Science 333(6050), 1720–1723 (2011)ADSCrossRef Cai, W.S., Vasudev, A.P., Brongersma, M.L.: Electrically controlled nonlinear generation of light with plasmonics. Science 333(6050), 1720–1723 (2011)ADSCrossRef
Zurück zum Zitat Cazzanelli, M., Bianco, F., Borga, E., Pucker, G., Ghulinyan, M., Degoli, E., Luppi, E., Véniard, V., Ossicini, S., Modotto, D., Wabnitz, S., Pierobon, R., Pavesi, L.: Second-harmonic generation in silicon waveguides strained by silicon nitride. Nat. Mater. 11(2), 148–154 (2011)ADSCrossRef Cazzanelli, M., Bianco, F., Borga, E., Pucker, G., Ghulinyan, M., Degoli, E., Luppi, E., Véniard, V., Ossicini, S., Modotto, D., Wabnitz, S., Pierobon, R., Pavesi, L.: Second-harmonic generation in silicon waveguides strained by silicon nitride. Nat. Mater. 11(2), 148–154 (2011)ADSCrossRef
Zurück zum Zitat Davoyan, A.R., Shadrivov, I.V., Kivshar, Y.S.: Quadratic phase matching in nonlinear plasmonic nanoscale waveguides. Opt. Expr. 17(22), 20063–20068 (2009)ADSCrossRef Davoyan, A.R., Shadrivov, I.V., Kivshar, Y.S.: Quadratic phase matching in nonlinear plasmonic nanoscale waveguides. Opt. Expr. 17(22), 20063–20068 (2009)ADSCrossRef
Zurück zum Zitat de Oliveira, R.E.P., Lipson, M., de Matos, C.J.S. Electrically controlled silicon nitride ring resonator for quasi-phase matched second-harmonic generation. In CLEO: Science and Innovations, Optical Society of America (2012) de Oliveira, R.E.P., Lipson, M., de Matos, C.J.S. Electrically controlled silicon nitride ring resonator for quasi-phase matched second-harmonic generation. In CLEO: Science and Innovations, Optical Society of America (2012)
Zurück zum Zitat Dionne, J.A., Sweatlock, L.A., Atwater, H.A.: Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73, 035407 (2006)ADSCrossRef Dionne, J.A., Sweatlock, L.A., Atwater, H.A.: Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73, 035407 (2006)ADSCrossRef
Zurück zum Zitat Gosciniak, J., Holmgaard, T., Bozhevolnyi, S.I.: Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides. J. Lightwave Technol. 29, 1473–1481 (2011)ADSCrossRef Gosciniak, J., Holmgaard, T., Bozhevolnyi, S.I.: Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides. J. Lightwave Technol. 29, 1473–1481 (2011)ADSCrossRef
Zurück zum Zitat Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010)ADSCrossRef Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010)ADSCrossRef
Zurück zum Zitat Harimoto, T., Yo, B., Uchida, K.: A novel multipass scheme for enhancement of second harmonic generation. Opt. Express 19, 22692–22697 (2011)ADSCrossRef Harimoto, T., Yo, B., Uchida, K.: A novel multipass scheme for enhancement of second harmonic generation. Opt. Express 19, 22692–22697 (2011)ADSCrossRef
Zurück zum Zitat Hasan, S.B., Rockstuhl, C., Pertsch, T., Lederer, F.: Second-order nonlinear frequency conversion processes in plasmonic slot waveguides. J. Opt. Soc. Am. B 29(7), 1606–1611 (2012)ADSCrossRef Hasan, S.B., Rockstuhl, C., Pertsch, T., Lederer, F.: Second-order nonlinear frequency conversion processes in plasmonic slot waveguides. J. Opt. Soc. Am. B 29(7), 1606–1611 (2012)ADSCrossRef
Zurück zum Zitat Kurokawa, Y., Miyazaki, H.T.: Metal-insulator-metal plasmon nanocavities: analysis of optical properties. Phys. Rev. B 75, 035411 (2007)ADSCrossRef Kurokawa, Y., Miyazaki, H.T.: Metal-insulator-metal plasmon nanocavities: analysis of optical properties. Phys. Rev. B 75, 035411 (2007)ADSCrossRef
Zurück zum Zitat Levy, J.S., Foster, M.A., Gaeta, A.L., Lipson, M.: Harmonic generation in silicon nitride ring resonators. Opt. Expr 19(12), 11415–11421 (2011)ADSCrossRef Levy, J.S., Foster, M.A., Gaeta, A.L., Lipson, M.: Harmonic generation in silicon nitride ring resonators. Opt. Expr 19(12), 11415–11421 (2011)ADSCrossRef
Zurück zum Zitat Li, H., Zhu, N., Zhang, H., Chen, Z., Mei, T. Nonlocal effects on second harmonic generation in nanofi lm plasmonic structure. Opt. Commun. (2014) Li, H., Zhu, N., Zhang, H., Chen, Z., Mei, T. Nonlocal effects on second harmonic generation in nanofi lm plasmonic structure. Opt. Commun. (2014)
Zurück zum Zitat Lu, F.F., Li, T., Hu, X.P., Cheng, Q.Q., Zhu, S.N., Zhu, Y.Y.: Efficient second harmonic generation in nonlinear plasmonic waveguide. Opt. Lett. 36, 3371–3373 (2011)ADSCrossRef Lu, F.F., Li, T., Hu, X.P., Cheng, Q.Q., Zhu, S.N., Zhu, Y.Y.: Efficient second harmonic generation in nonlinear plasmonic waveguide. Opt. Lett. 36, 3371–3373 (2011)ADSCrossRef
Zurück zum Zitat Maier, S.A.: Plasmonics, Fundamentals and Applications. Springer, New York (2007) Maier, S.A.: Plasmonics, Fundamentals and Applications. Springer, New York (2007)
Zurück zum Zitat Miyazaki, H.T., Kurokawa, Y.: Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys. Rev. Lett. 96, 097401 (2006)ADSCrossRef Miyazaki, H.T., Kurokawa, Y.: Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys. Rev. Lett. 96, 097401 (2006)ADSCrossRef
Zurück zum Zitat Neacsu, C.C., Reider, G.A., Raschke, M.B.: Second harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures. Phys. Rev. B 71, 201402 (2005)ADSCrossRef Neacsu, C.C., Reider, G.A., Raschke, M.B.: Second harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures. Phys. Rev. B 71, 201402 (2005)ADSCrossRef
Zurück zum Zitat Neutens, P., Van Dorpe, P., De Vlaminck, I., Lagae, L., Borghs, G.: Electrical detection of confined gap plas-mons in metal-insulator-metal waveguides. Nat. Photonics 3, 283–286 (2009)ADSCrossRef Neutens, P., Van Dorpe, P., De Vlaminck, I., Lagae, L., Borghs, G.: Electrical detection of confined gap plas-mons in metal-insulator-metal waveguides. Nat. Photonics 3, 283–286 (2009)ADSCrossRef
Zurück zum Zitat Ning, T.Y., Pietarinen, H., Hyvärinen, O., Kumar, R., Kaplas, T., Kauranen, M., Genty, G.: Efficient secondharmonic generation in silicon nitride resonant waveguide gratings. Opt. Lett. 37(20), 4269–4271 (2012)ADSCrossRef Ning, T.Y., Pietarinen, H., Hyvärinen, O., Kumar, R., Kaplas, T., Kauranen, M., Genty, G.: Efficient secondharmonic generation in silicon nitride resonant waveguide gratings. Opt. Lett. 37(20), 4269–4271 (2012)ADSCrossRef
Zurück zum Zitat Oulton, R.F., Sorger, V.J., Genov, D.A., Pile, D.F.P., Zhang, X.: A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation. Nat. Photonics 2, 496–500 (2008)CrossRef Oulton, R.F., Sorger, V.J., Genov, D.A., Pile, D.F.P., Zhang, X.: A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation. Nat. Photonics 2, 496–500 (2008)CrossRef
Zurück zum Zitat Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)ADSCrossRef Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)ADSCrossRef
Zurück zum Zitat Park, J., Kim, K.Y., Lee, I.M., Na, H., Lee, S.Y., Lee, B.: Trapping light in plasmonic waveguides. Opt. Expr. 18, 598–623 (2010)ADSCrossRef Park, J., Kim, K.Y., Lee, I.M., Na, H., Lee, S.Y., Lee, B.: Trapping light in plasmonic waveguides. Opt. Expr. 18, 598–623 (2010)ADSCrossRef
Zurück zum Zitat Park, S., Hahn, J.W., Yong Lee, J.: Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation. Opt. Expr. 20, 4856–4870 (2012)ADSCrossRef Park, S., Hahn, J.W., Yong Lee, J.: Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation. Opt. Expr. 20, 4856–4870 (2012)ADSCrossRef
Zurück zum Zitat Schuller, J.A., Barnard, E.S., Cai, W., Jun, Y.C., White, J.S., Brongersma, M.L.: Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010)ADSCrossRef Schuller, J.A., Barnard, E.S., Cai, W., Jun, Y.C., White, J.S., Brongersma, M.L.: Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010)ADSCrossRef
Zurück zum Zitat Simon, H.J., Mitchell, D.E., Watson, J.G. Optical second harmonic generation with surface plasmons in silver films. Phys. Rev. Lett. 33, 10545–10562 (1974)CrossRef Simon, H.J., Mitchell, D.E., Watson, J.G. Optical second harmonic generation with surface plasmons in silver films. Phys. Rev. Lett. 33, 10545–10562 (1974)CrossRef
Zurück zum Zitat Sorger, V.J., Oulton, R.F., Ma, R.-M., Zhang, X.: Toward integrated plasmonic circuits. MRS Bull. 37(08), 728–738 (2012)CrossRef Sorger, V.J., Oulton, R.F., Ma, R.-M., Zhang, X.: Toward integrated plasmonic circuits. MRS Bull. 37(08), 728–738 (2012)CrossRef
Zurück zum Zitat Stockman, M.I.: Nanoplasmonics: past, present, and glimpse into future. Opt. Expr. 19(22), 22029–22106 (2011)ADSCrossRef Stockman, M.I.: Nanoplasmonics: past, present, and glimpse into future. Opt. Expr. 19(22), 22029–22106 (2011)ADSCrossRef
Zurück zum Zitat Veronis, G., Fan, S.: Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides. Appl. Phys. Lett. 87, 131102 (2005)ADSCrossRef Veronis, G., Fan, S.: Bends and splitters in metal–dielectric–metal subwavelength plasmonic waveguides. Appl. Phys. Lett. 87, 131102 (2005)ADSCrossRef
Zurück zum Zitat Yang, R.X., Wahsheh, R.A., Lu, Z.L., Abushagur, M.A.G.: Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide. Opt. Lett. 35, 649–651 (2010)ADSCrossRef Yang, R.X., Wahsheh, R.A., Lu, Z.L., Abushagur, M.A.G.: Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide. Opt. Lett. 35, 649–651 (2010)ADSCrossRef
Zurück zum Zitat Yariv, A.: Phase conjugate optics and real-time holography. IEEE J. Quantum Electron. 14(9), 650–660 (1978)ADSCrossRef Yariv, A.: Phase conjugate optics and real-time holography. IEEE J. Quantum Electron. 14(9), 650–660 (1978)ADSCrossRef
Zurück zum Zitat Yazdanypoor, M., Emami, F.: Enhancement of photorefractive effect in asymmetric metal-insulator-metal plasmonic waveguides. J. Nanophotonics 9, 093074–093074 (2015)CrossRef Yazdanypoor, M., Emami, F.: Enhancement of photorefractive effect in asymmetric metal-insulator-metal plasmonic waveguides. J. Nanophotonics 9, 093074–093074 (2015)CrossRef
Zurück zum Zitat Zhang, J., Cassan, E., Gao, D., Zhang, X.: Highly efficient phase-matched second harmonic generation using an asymmetric plasmonic slot waveguide configuration in hybrid polymer-silicon photonics. Opt. Soc. Am. 21, 14876–14887 (2013) Zhang, J., Cassan, E., Gao, D., Zhang, X.: Highly efficient phase-matched second harmonic generation using an asymmetric plasmonic slot waveguide configuration in hybrid polymer-silicon photonics. Opt. Soc. Am. 21, 14876–14887 (2013)
Zurück zum Zitat Zhang, H.C., Zhang, Q., Liu, J.F., Tang, W., Fan, Y., Cui, T.J.: Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies. ACS Photonics 3, 139–146 (2016)ADSCrossRef Zhang, H.C., Zhang, Q., Liu, J.F., Tang, W., Fan, Y., Cui, T.J.: Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies. ACS Photonics 3, 139–146 (2016)ADSCrossRef
Zurück zum Zitat Zia, R., Selker, M.D., Catrysse, P.B., Brongersma, M.L.: Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A 21, 2442–2446 (2004)ADSCrossRef Zia, R., Selker, M.D., Catrysse, P.B., Brongersma, M.L.: Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A 21, 2442–2446 (2004)ADSCrossRef
Metadaten
Titel
Optimizing of the novel asymmetric plasmonic waveguide with two identical gratings to increase the SHG efficiency
verfasst von
Mohammad Yazdanypoor
Farzin Emami
Publikationsdatum
01.11.2016
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 11/2016
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-016-0753-1

Weitere Artikel der Ausgabe 11/2016

Optical and Quantum Electronics 11/2016 Zur Ausgabe

Neuer Inhalt