Skip to main content

2019 | OriginalPaper | Buchkapitel

Organic/Silica Nanocomposite Membranes Applicable to Green Chemistry

verfasst von : Mashallah Rezakazemi, Amir Dashti, Nasibeh Hajilary, Saeed Shirazian

Erschienen in: Sustainable Polymer Composites and Nanocomposites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Generally, organic/inorganic nanocomposites consist of organic polymers incorporated with inorganic fillers in nanoscale. They integrate the benefits of the inorganic materials (e.g. thermal and chemical stability, stiffness) and the organic polymers (e.g., dielectric, flexibility, processability, and ductility). Recently, polymer-Si nanocomposites have received considerable attention and have been applied in many different applications. Proton-exchange membrane fuel cells (PEMFCs) have appeared as an environmentally friendly device to meet the energy demands of the recent years. Nafion® is a commonly recognized and commercialized membrane which offers exceptional electrochemical attributes below 80 °C, and under extremely humidified environments. Nevertheless, a reduction in the proton conductivity of Nafion® over 80 °C and decreased humidity, as well as expensive membrane price, has motivated the progress of novel membranes. The incorporation of fillers, particularly nano-sized Si particulates, to the polymeric matrix was employed to partially resolve the problems. Thus, this account will provide a broad summary of the methods and techniques employed for the nanocomposites preparation as well as a short explanation about their properties, characterizations, and applications. In-depth explanations of particular subjects can be found in related references.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rezakazemi M, Shahidi K, Mohammadi T (2012) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37:14576–14589CrossRef Rezakazemi M, Shahidi K, Mohammadi T (2012) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrogen Energy 37:14576–14589CrossRef
2.
Zurück zum Zitat Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic-inorganic composite polymer electrolyte membranes: preparation, properties, and fuel cell applications. Springer International Publishing, Cham, pp 311–325CrossRef Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017) Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic-inorganic composite polymer electrolyte membranes: preparation, properties, and fuel cell applications. Springer International Publishing, Cham, pp 311–325CrossRef
3.
Zurück zum Zitat Baheri B, Shahverdi M, Rezakazemi M, Motaee E, Mohammadi T (2015) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202:316–321CrossRef Baheri B, Shahverdi M, Rezakazemi M, Motaee E, Mohammadi T (2015) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202:316–321CrossRef
4.
Zurück zum Zitat Shahverdi M, Baheri B, Rezakazemi M, Motaee E, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA–4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53:1487–1493CrossRef Shahverdi M, Baheri B, Rezakazemi M, Motaee E, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA–4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53:1487–1493CrossRef
5.
Zurück zum Zitat Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39 817–861 Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39 817–861
6.
Zurück zum Zitat Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: Experimental and neural network modeling. Int J Hydrogen Energy 38:1128–1135CrossRef Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: Experimental and neural network modeling. Int J Hydrogen Energy 38:1128–1135CrossRef
7.
Zurück zum Zitat Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: Experimental and neural network modeling. Int J Hydrogen Energy 38:14035–14041CrossRef Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: Experimental and neural network modeling. Int J Hydrogen Energy 38:14035–14041CrossRef
8.
Zurück zum Zitat Rezakazemi M, Dashti A, Asghari M, Shirazian S (2017) H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int J Hydrogen Energy 42:15211–15225CrossRef Rezakazemi M, Dashti A, Asghari M, Shirazian S (2017) H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int J Hydrogen Energy 42:15211–15225CrossRef
9.
Zurück zum Zitat Rezakazemi M, Shahidi K, Mohammadi T (2012) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37:17275–17284CrossRef Rezakazemi M, Shahidi K, Mohammadi T (2012) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrogen Energy 37:17275–17284CrossRef
10.
Zurück zum Zitat Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5:82460–82470CrossRef Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5:82460–82470CrossRef
11.
Zurück zum Zitat Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18CrossRef Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18CrossRef
12.
Zurück zum Zitat Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957CrossRef Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957CrossRef
13.
Zurück zum Zitat Rezakazemi M, Maghami M, Mohammadi T (2018) High loaded synthetic hazardous wastewater treatment using lab-scale submerged ceramic membrane bioreactor. Periodica Polytech, Chem Eng 62:299–304CrossRef Rezakazemi M, Maghami M, Mohammadi T (2018) High loaded synthetic hazardous wastewater treatment using lab-scale submerged ceramic membrane bioreactor. Periodica Polytech, Chem Eng 62:299–304CrossRef
14.
Zurück zum Zitat Schadler LS, Kumar SK, Benicewicz BC, Lewis SL, Harton SE (2007) Designed interfaces in polymer nanocomposites: a fundamental viewpoint. MRS Bull 32:335–340CrossRef Schadler LS, Kumar SK, Benicewicz BC, Lewis SL, Harton SE (2007) Designed interfaces in polymer nanocomposites: a fundamental viewpoint. MRS Bull 32:335–340CrossRef
15.
Zurück zum Zitat Rezakazemi M, Shahverdi M, Shirazian S, Mohammadi T, Pak A (2011) CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation. Chem Eng J 168:60–67CrossRef Rezakazemi M, Shahverdi M, Shirazian S, Mohammadi T, Pak A (2011) CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation. Chem Eng J 168:60–67CrossRef
16.
Zurück zum Zitat Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41CrossRef Rezakazemi M, Sadrzadeh M, Matsuura T (2018) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41CrossRef
17.
Zurück zum Zitat Mura F, Silva R, Pozio A (2007) Study on the conductivity of recast Nafion®/montmorillonite and Nafion®/TiO 2 composite membranes. Electrochim Acta 52:5824–5828CrossRef Mura F, Silva R, Pozio A (2007) Study on the conductivity of recast Nafion®/montmorillonite and Nafion®/TiO 2 composite membranes. Electrochim Acta 52:5824–5828CrossRef
18.
Zurück zum Zitat Park KT, Jung UH, Choi DW, Chun K, Lee HM, Kim SH (2008) ZrO 2–SiO 2/Nafion® composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity. J Power Sources 177:247–253CrossRef Park KT, Jung UH, Choi DW, Chun K, Lee HM, Kim SH (2008) ZrO 2–SiO 2/Nafion® composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity. J Power Sources 177:247–253CrossRef
19.
Zurück zum Zitat Aparicio M, Mosa J, Etienne M, Durán A (2005) Proton-conducting methacrylate–silica sol–gel membranes containing tungstophosphoric acid. J Power Sources 145:231–236CrossRef Aparicio M, Mosa J, Etienne M, Durán A (2005) Proton-conducting methacrylate–silica sol–gel membranes containing tungstophosphoric acid. J Power Sources 145:231–236CrossRef
20.
Zurück zum Zitat Di Vona M, Sgreccia E, Donnadio A, Casciola M, Chailan J, Auer G, Knauth P (2011) Composite polymer electrolytes of sulfonated poly-ether-ether-ketone (SPEEK) with organically functionalized TiO 2. J Membr Sci 369:536–544CrossRef Di Vona M, Sgreccia E, Donnadio A, Casciola M, Chailan J, Auer G, Knauth P (2011) Composite polymer electrolytes of sulfonated poly-ether-ether-ketone (SPEEK) with organically functionalized TiO 2. J Membr Sci 369:536–544CrossRef
21.
Zurück zum Zitat Zhengbang W, Tang H, Mu P (2011) Self-assembly of durable Nafion/TiO 2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells. J Membr Sci 369:250–257CrossRef Zhengbang W, Tang H, Mu P (2011) Self-assembly of durable Nafion/TiO 2 nanowire electrolyte membranes for elevated-temperature PEM fuel cells. J Membr Sci 369:250–257CrossRef
22.
Zurück zum Zitat Rezakazemi M, Zhang Z (2018) 2.29 Desulfurization Materials A2—Dincer, Ibrahim. In: Comprehensive energy systems. Elsevier, Oxford, pp 944–979 Rezakazemi M, Zhang Z (2018) 2.29 Desulfurization Materials A2—Dincer, Ibrahim. In: Comprehensive energy systems. Elsevier, Oxford, pp 944–979
23.
Zurück zum Zitat Hashemi F, Rowshanzamir S, Rezakazemi M (2012) CFD simulation of PEM fuel cell performance: Effect of straight and serpentine flow fields. Math Comput Model 55:1540–1557CrossRef Hashemi F, Rowshanzamir S, Rezakazemi M (2012) CFD simulation of PEM fuel cell performance: Effect of straight and serpentine flow fields. Math Comput Model 55:1540–1557CrossRef
24.
Zurück zum Zitat Cong H, Radosz M, Towler BF, Shen Y (2007) Polymer–inorganic nanocomposite membranes for gas separation. Sep Purif Technol 55:281–291CrossRef Cong H, Radosz M, Towler BF, Shen Y (2007) Polymer–inorganic nanocomposite membranes for gas separation. Sep Purif Technol 55:281–291CrossRef
25.
Zurück zum Zitat Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology. Wiley Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology. Wiley
26.
Zurück zum Zitat Xing D, He G, Hou Z, Ming P, Song S (2011) Preparation and characterization of a modified montmorillonite/sulfonated polyphenylether sulfone/PTFE composite membrane. Int J Hydrogen Energy 36:2177–2183CrossRef Xing D, He G, Hou Z, Ming P, Song S (2011) Preparation and characterization of a modified montmorillonite/sulfonated polyphenylether sulfone/PTFE composite membrane. Int J Hydrogen Energy 36:2177–2183CrossRef
27.
Zurück zum Zitat Cho Y-H, Kim S-K, Kim T-H, Cho Y-H, Lim JW, Jung N, Yoon W-S, Lee J-C, Sung Y-E (2011) Preparation of MEA with the polybenzimidazole membrane for high temperature PEM fuel cell. Electrochem Solid-State Lett 14:B38–B40CrossRef Cho Y-H, Kim S-K, Kim T-H, Cho Y-H, Lim JW, Jung N, Yoon W-S, Lee J-C, Sung Y-E (2011) Preparation of MEA with the polybenzimidazole membrane for high temperature PEM fuel cell. Electrochem Solid-State Lett 14:B38–B40CrossRef
28.
Zurück zum Zitat Tago T, Kuwashiro N, Nishide H (2007) Preparation of acid-functionalized poly (phenylene oxide) s and poly (phenylene sulfone) and their proton conductivity. Bulletin of the Chem Soc Jpn 80:1429–1434CrossRef Tago T, Kuwashiro N, Nishide H (2007) Preparation of acid-functionalized poly (phenylene oxide) s and poly (phenylene sulfone) and their proton conductivity. Bulletin of the Chem Soc Jpn 80:1429–1434CrossRef
29.
Zurück zum Zitat Sodeifian G, Raji M, Asghari M, Rezakazemi M, Dashti A (2018) Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Chin J Chem Eng Sodeifian G, Raji M, Asghari M, Rezakazemi M, Dashti A (2018) Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Chin J Chem Eng
30.
Zurück zum Zitat Rezakazemi M, Razavi S, Mohammadi T, Nazari AG (2011) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J Membr Sci 379:224–232CrossRef Rezakazemi M, Razavi S, Mohammadi T, Nazari AG (2011) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J Membr Sci 379:224–232CrossRef
31.
Zurück zum Zitat Gómez-Romero P, Sanchez C, Functional hybrid materials. Wiley (2006) Gómez-Romero P, Sanchez C, Functional hybrid materials. Wiley (2006)
32.
Zurück zum Zitat Zhang S, Xu T, Wu C (2006) Synthesis and characterizations of novel, positively charged hybrid membranes from poly (2, 6-dimethyl-1, 4-phenylene oxide). J Membr Sci 269:142–151CrossRef Zhang S, Xu T, Wu C (2006) Synthesis and characterizations of novel, positively charged hybrid membranes from poly (2, 6-dimethyl-1, 4-phenylene oxide). J Membr Sci 269:142–151CrossRef
33.
Zurück zum Zitat Wu C, Xu T, Yang W (2005) Synthesis and characterizations of novel, positively charged poly (methyl acrylate)–SiO 2 nanocomposites. Eur Polymer J 41:1901–1908CrossRef Wu C, Xu T, Yang W (2005) Synthesis and characterizations of novel, positively charged poly (methyl acrylate)–SiO 2 nanocomposites. Eur Polymer J 41:1901–1908CrossRef
34.
Zurück zum Zitat Saito R, Kobayashi S-I, Hayashi H, Shimo T (2007) Surface hardness and transparency of poly(methyl methacrylate)-silica coat film derived from perhydropolysilazane. J Appl Polym Sci 104:3388–3395CrossRef Saito R, Kobayashi S-I, Hayashi H, Shimo T (2007) Surface hardness and transparency of poly(methyl methacrylate)-silica coat film derived from perhydropolysilazane. J Appl Polym Sci 104:3388–3395CrossRef
35.
Zurück zum Zitat Shen L, Du Q, Wang H, Zhong W, Yang Y (2004) In situ polymerization and characterization of polyamide-6/silica nanocomposites derived from water glass. Polym Int 53:1153–1160CrossRef Shen L, Du Q, Wang H, Zhong W, Yang Y (2004) In situ polymerization and characterization of polyamide-6/silica nanocomposites derived from water glass. Polym Int 53:1153–1160CrossRef
36.
Zurück zum Zitat Ding X, Jiang Y, Yu K, Hari B, Tao N, Zhao J, Wang Z (2004) Silicon dioxide as coating on polystyrene nanoparticles in situ emulsion polymerization. Mater Lett 58:1722–1725CrossRef Ding X, Jiang Y, Yu K, Hari B, Tao N, Zhao J, Wang Z (2004) Silicon dioxide as coating on polystyrene nanoparticles in situ emulsion polymerization. Mater Lett 58:1722–1725CrossRef
37.
Zurück zum Zitat Laugel N, Hemmerlé J, Porcel C, Voegel J-C, Schaaf P, Ball V (2007) Nanocomposite silica/polyamine films prepared by a reactive layer-by-layer deposition. Langmuir 23:3706–3711CrossRef Laugel N, Hemmerlé J, Porcel C, Voegel J-C, Schaaf P, Ball V (2007) Nanocomposite silica/polyamine films prepared by a reactive layer-by-layer deposition. Langmuir 23:3706–3711CrossRef
38.
Zurück zum Zitat Grund S, Kempe P, Baumann G, Seifert A, Spange S (2007) Nanocomposites prepared by twin polymerization of a single-source monomer. Angew Chem Int Ed 46:628–632CrossRef Grund S, Kempe P, Baumann G, Seifert A, Spange S (2007) Nanocomposites prepared by twin polymerization of a single-source monomer. Angew Chem Int Ed 46:628–632CrossRef
39.
Zurück zum Zitat Suffner J, Schechner G, Sieger H, Hahn H (2007) In-situ coating of silica nanoparticles with acrylate-based polymers. Chem Vap Deposition 13:459–464CrossRef Suffner J, Schechner G, Sieger H, Hahn H (2007) In-situ coating of silica nanoparticles with acrylate-based polymers. Chem Vap Deposition 13:459–464CrossRef
40.
Zurück zum Zitat Senkevich JJ, Desu SB (1999) Near-room-temperature thermal chemical vapor deposition of poly(chloro-p-xylylene)/SiO2 nanocomposites. Chem Mater 11:1814–1821CrossRef Senkevich JJ, Desu SB (1999) Near-room-temperature thermal chemical vapor deposition of poly(chloro-p-xylylene)/SiO2 nanocomposites. Chem Mater 11:1814–1821CrossRef
41.
Zurück zum Zitat Mishra AK, Chattopadhyay S, Rajamohanan P, Nando GB (2011) Effect of tethering on the structure-property relationship of TPU-dual modified Laponite clay nanocomposites prepared by ex-situ and in-situ techniques. Polymer 52:1071–1083CrossRef Mishra AK, Chattopadhyay S, Rajamohanan P, Nando GB (2011) Effect of tethering on the structure-property relationship of TPU-dual modified Laponite clay nanocomposites prepared by ex-situ and in-situ techniques. Polymer 52:1071–1083CrossRef
42.
Zurück zum Zitat Seo W, Sung Y, Han S, Kim Y, Ryu O, Lee H, Kim WN (2006) Synthesis and properties of polyurethane/clay nanocomposite by clay modified with polymeric methane diisocyanate. J Appl Polym Sci 101:2879–2883CrossRef Seo W, Sung Y, Han S, Kim Y, Ryu O, Lee H, Kim WN (2006) Synthesis and properties of polyurethane/clay nanocomposite by clay modified with polymeric methane diisocyanate. J Appl Polym Sci 101:2879–2883CrossRef
43.
Zurück zum Zitat Mishra AK, Rajamohanan P, Nando GB, Chattopadhyay S (2011) Structure–property of thermoplastic polyurethane–clay nanocomposite based on covalent and dual-modified Laponite. Adv Sci Lett 4:65–73CrossRef Mishra AK, Rajamohanan P, Nando GB, Chattopadhyay S (2011) Structure–property of thermoplastic polyurethane–clay nanocomposite based on covalent and dual-modified Laponite. Adv Sci Lett 4:65–73CrossRef
44.
Zurück zum Zitat Mishra A, Nando G, Chattopadhyay S (2008) Exploring preferential association of laponite and cloisite with soft and hard segments in TPU-clay nanocomposite prepared by solution mixing technique. J Polym Sci, Part B: Polym Phys 46:2341–2354CrossRef Mishra A, Nando G, Chattopadhyay S (2008) Exploring preferential association of laponite and cloisite with soft and hard segments in TPU-clay nanocomposite prepared by solution mixing technique. J Polym Sci, Part B: Polym Phys 46:2341–2354CrossRef
45.
Zurück zum Zitat Aparicio M, Durán A (2004) Hybrid organic/inorganic sol-gel materials for proton conducting membranes. J Sol-Gel Sci Technol 31:103–107CrossRef Aparicio M, Durán A (2004) Hybrid organic/inorganic sol-gel materials for proton conducting membranes. J Sol-Gel Sci Technol 31:103–107CrossRef
46.
Zurück zum Zitat Aparicio M, Castro Y, Duran A (2005) Synthesis and characterisation of proton conducting styrene-co-methacrylate–silica sol–gel membranes containing tungstophosphoric acid. Solid State Ionics 176:333–340CrossRef Aparicio M, Castro Y, Duran A (2005) Synthesis and characterisation of proton conducting styrene-co-methacrylate–silica sol–gel membranes containing tungstophosphoric acid. Solid State Ionics 176:333–340CrossRef
47.
Zurück zum Zitat Tillet G, Boutevin B, Ameduri B (2011) Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog Polym Sci 36:191–217CrossRef Tillet G, Boutevin B, Ameduri B (2011) Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Prog Polym Sci 36:191–217CrossRef
48.
Zurück zum Zitat Lin B, Cheng S, Qiu L, Yan F, Shang S, Lu J (2010) Protic ionic liquid-based hybrid proton-conducting membranes for anhydrous proton exchange membrane application. Chem Mater 22:1807–1813CrossRef Lin B, Cheng S, Qiu L, Yan F, Shang S, Lu J (2010) Protic ionic liquid-based hybrid proton-conducting membranes for anhydrous proton exchange membrane application. Chem Mater 22:1807–1813CrossRef
49.
Zurück zum Zitat Darbandi M, Thomann R, Nann T (2007) Hollow silica nanospheres: in situ, semi-in situ, and two-step synthesis. Chem Mater 19:1700–1703CrossRef Darbandi M, Thomann R, Nann T (2007) Hollow silica nanospheres: in situ, semi-in situ, and two-step synthesis. Chem Mater 19:1700–1703CrossRef
50.
Zurück zum Zitat Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRef Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRef
51.
Zurück zum Zitat Bronstein LM, HCD, Kim G (Ed) (2004) Dekker encyclopedia of nanoscience and nanotechnology. Taylor & Francis, New York, pp 1–10 Bronstein LM, HCD, Kim G (Ed) (2004) Dekker encyclopedia of nanoscience and nanotechnology. Taylor & Francis, New York, pp 1–10
52.
Zurück zum Zitat Osseo-Asare K, Arriagada F (1990) Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids Surf 50:321–339CrossRef Osseo-Asare K, Arriagada F (1990) Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids Surf 50:321–339CrossRef
53.
Zurück zum Zitat Vassiliou AA, Papageorgiou GZ, Achilias DS, Bikiaris DN (2007) Non-Isothermal Crystallisation Kinetics of In Situ Prepared Poly (ε-caprolactone)/Surface-Treated SiO2 Nanocomposites. Macromol Chem Phys 208:364–376CrossRef Vassiliou AA, Papageorgiou GZ, Achilias DS, Bikiaris DN (2007) Non-Isothermal Crystallisation Kinetics of In Situ Prepared Poly (ε-caprolactone)/Surface-Treated SiO2 Nanocomposites. Macromol Chem Phys 208:364–376CrossRef
54.
Zurück zum Zitat Jana SC, Jain S (2001) Dispersion of nanofillers in high performance polymers using reactive solvents as processing aids. Polymer 42:6897–6905CrossRef Jana SC, Jain S (2001) Dispersion of nanofillers in high performance polymers using reactive solvents as processing aids. Polymer 42:6897–6905CrossRef
55.
Zurück zum Zitat Nalwa HS (2003) Handbook of organic-inorganic hybrid materials and nanocomposites. In: Zhang MQR, MZ, Friedrich K (Ed) American Scientific Publishers, California, pp 113–150 Nalwa HS (2003) Handbook of organic-inorganic hybrid materials and nanocomposites. In: Zhang MQR, MZ, Friedrich K (Ed) American Scientific Publishers, California, pp 113–150
56.
Zurück zum Zitat Blum FD (2004) Encyclopedia of polymer science and technology, concise. In: Kroschwitz JI (Ed) Wiley, pp 38–50 Blum FD (2004) Encyclopedia of polymer science and technology, concise. In: Kroschwitz JI (Ed) Wiley, pp 38–50
57.
Zurück zum Zitat Gomes D, Buder I, Nunes SP (2006) Sulfonated silica-based electrolyte nanocomposite membranes. J Polym Sci, Part B: Polym Phys 44:2278–2298CrossRef Gomes D, Buder I, Nunes SP (2006) Sulfonated silica-based electrolyte nanocomposite membranes. J Polym Sci, Part B: Polym Phys 44:2278–2298CrossRef
58.
Zurück zum Zitat Wu T-M, Chu M-S (2005) Preparation and characterization of thermoplastic vulcanizate/silica nanocomposites. J Appl Polym Sci 98:2058–2063CrossRef Wu T-M, Chu M-S (2005) Preparation and characterization of thermoplastic vulcanizate/silica nanocomposites. J Appl Polym Sci 98:2058–2063CrossRef
59.
Zurück zum Zitat Ahn SH, Kim SH, Lee SG (2004) Surface-modified silica nanoparticle–reinforced poly(ethylene 2, 6-naphthalate). J Appl Polym Sci 94:812–818CrossRef Ahn SH, Kim SH, Lee SG (2004) Surface-modified silica nanoparticle–reinforced poly(ethylene 2, 6-naphthalate). J Appl Polym Sci 94:812–818CrossRef
60.
Zurück zum Zitat Lai YH, Kuo MC, Huang JC, Chen M (2007) On the PEEK composites reinforced by surface-modified nano-silica. Mater Sci Eng, A 458:158–169CrossRef Lai YH, Kuo MC, Huang JC, Chen M (2007) On the PEEK composites reinforced by surface-modified nano-silica. Mater Sci Eng, A 458:158–169CrossRef
61.
Zurück zum Zitat Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K (2001) Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Poly 42:167–183CrossRef Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K (2001) Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Poly 42:167–183CrossRef
62.
Zurück zum Zitat Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Friedrich K (2001) Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42:3301–3304CrossRef Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Friedrich K (2001) Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42:3301–3304CrossRef
63.
Zurück zum Zitat Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos. Sci. Technol. 62:1327–1340CrossRef Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Tensile performance improvement of low nanoparticles filled-polypropylene composites. Compos. Sci. Technol. 62:1327–1340CrossRef
64.
Zurück zum Zitat Zhang MQ, Rong MZ, Zhang HB, Friedrich K (2003) Mechanical properties of low nano-silica filled high density polyethylene composites. Polym Eng Sci 43:490–500CrossRef Zhang MQ, Rong MZ, Zhang HB, Friedrich K (2003) Mechanical properties of low nano-silica filled high density polyethylene composites. Polym Eng Sci 43:490–500CrossRef
65.
Zurück zum Zitat Wu CL, Zhang MQ, Rong MZ, Friedrich K (2005) Silica nanoparticles filled polypropylene: effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites. Compos. Sci. Technol. 65:635–645CrossRef Wu CL, Zhang MQ, Rong MZ, Friedrich K (2005) Silica nanoparticles filled polypropylene: effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites. Compos. Sci. Technol. 65:635–645CrossRef
66.
Zurück zum Zitat Ruan WH, Huang XB, Wang XH, Rong MZ, Zhang MQ (2006) Effect of drawing induced dispersion of nano-silica on performance improvement of poly(propylene)-based nanocomposites. Macromol Rapid Commun 27:581–585CrossRef Ruan WH, Huang XB, Wang XH, Rong MZ, Zhang MQ (2006) Effect of drawing induced dispersion of nano-silica on performance improvement of poly(propylene)-based nanocomposites. Macromol Rapid Commun 27:581–585CrossRef
67.
Zurück zum Zitat Zhu Y, Li Z, Zhang D, Tanimoto T (2006) PET/SiO2 nanocomposites prepared by cryomilling. J Polym Sci, Part B: Polym Phys 44:1161–1167CrossRef Zhu Y, Li Z, Zhang D, Tanimoto T (2006) PET/SiO2 nanocomposites prepared by cryomilling. J Polym Sci, Part B: Polym Phys 44:1161–1167CrossRef
68.
Zurück zum Zitat Zhu Y-G, Li Z-Q, Zhang D, Tanimoto T (2006) Thermal behaviors of poly(ethylene terephthalate)/SiO2 nanocomposites prepared by cryomilling. J Polym Sci, Part B: Polym Phys 44:1351–1356CrossRef Zhu Y-G, Li Z-Q, Zhang D, Tanimoto T (2006) Thermal behaviors of poly(ethylene terephthalate)/SiO2 nanocomposites prepared by cryomilling. J Polym Sci, Part B: Polym Phys 44:1351–1356CrossRef
69.
Zurück zum Zitat Petrovicova E, Knight R, Schadler L, Twardowski T (2000) Nylon 11/silica nanocomposite coatings applied by the HVOF process. II. Mechanical and barrier properties. J. Appl. Polym. Sci. 78:2272–2289 Petrovicova E, Knight R, Schadler L, Twardowski T (2000) Nylon 11/silica nanocomposite coatings applied by the HVOF process. II. Mechanical and barrier properties. J. Appl. Polym. Sci. 78:2272–2289
70.
Zurück zum Zitat Petrovicova E, Knight R, Schadler L, Twardowski T (2000) Nylon 11/silica nanocomposite coatings applied by the HVOF process. I. Microstructure and morphology. J. Appl. Polym. Sci. 77:1684–1699 Petrovicova E, Knight R, Schadler L, Twardowski T (2000) Nylon 11/silica nanocomposite coatings applied by the HVOF process. I. Microstructure and morphology. J. Appl. Polym. Sci. 77:1684–1699
71.
Zurück zum Zitat Schadler LS, Laut KO, Smith RW, Petrovicova E (1997) Microstructure and mechanical properties of thermally sprayed silica/nylon nanocomposites. J Therm Spray Technol 6:475–485CrossRef Schadler LS, Laut KO, Smith RW, Petrovicova E (1997) Microstructure and mechanical properties of thermally sprayed silica/nylon nanocomposites. J Therm Spray Technol 6:475–485CrossRef
72.
Zurück zum Zitat Jafari H, Emami S, Mahmoudi Y (2017) Numerical investigation of dual-stage high velocity oxy-fuel (HVOF) thermal spray process: a study on nozzle geometrical parameters. Appl Therm Eng 111:745–758CrossRef Jafari H, Emami S, Mahmoudi Y (2017) Numerical investigation of dual-stage high velocity oxy-fuel (HVOF) thermal spray process: a study on nozzle geometrical parameters. Appl Therm Eng 111:745–758CrossRef
73.
Zurück zum Zitat Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28:1539–1641 Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28:1539–1641
74.
Zurück zum Zitat Shang X-Y, Zhu Z-K, Yin J, Ma X-D (2002) Compatibility of soluble polyimide/silica hybrids induced by a coupling agent. Chem Mater 14:71–77CrossRef Shang X-Y, Zhu Z-K, Yin J, Ma X-D (2002) Compatibility of soluble polyimide/silica hybrids induced by a coupling agent. Chem Mater 14:71–77CrossRef
75.
Zurück zum Zitat Kashiwagi T, Morgan AB, Antonucci JM, VanLandingham MR, Harris RH, Awad WH, Shields JR (2003) Thermal and flammability properties of a silica–poly(methylmethacrylate) nanocomposite. J Appl Polym Sci 89:2072–2078CrossRef Kashiwagi T, Morgan AB, Antonucci JM, VanLandingham MR, Harris RH, Awad WH, Shields JR (2003) Thermal and flammability properties of a silica–poly(methylmethacrylate) nanocomposite. J Appl Polym Sci 89:2072–2078CrossRef
76.
Zurück zum Zitat Crosby AJ, Lee JY (2007) Polymer Nanocomposites: the “Nano” effect on mechanical properties. Polym Rev 47:217–229CrossRef Crosby AJ, Lee JY (2007) Polymer Nanocomposites: the “Nano” effect on mechanical properties. Polym Rev 47:217–229CrossRef
77.
Zurück zum Zitat Mammeri F, Bourhis EL, Rozes L, Sanchez C (2005) Mechanical properties of hybrid organic-inorganic materials. J Mater Chem 15:3787–3811CrossRef Mammeri F, Bourhis EL, Rozes L, Sanchez C (2005) Mechanical properties of hybrid organic-inorganic materials. J Mater Chem 15:3787–3811CrossRef
78.
Zurück zum Zitat Lach R, Kim G-M, Michler GH, Grellmann W, Albrecht K (2006) Indentation fracture mechanics for toughness assessment of PMMA/SiO2 nanocomposites. Macromol Mater Eng 291:263–271CrossRef Lach R, Kim G-M, Michler GH, Grellmann W, Albrecht K (2006) Indentation fracture mechanics for toughness assessment of PMMA/SiO2 nanocomposites. Macromol Mater Eng 291:263–271CrossRef
79.
Zurück zum Zitat Joseph J, Tseng C-Y, Hwang B-J (2011) Phosphonic acid-grafted mesostructured silica/Nafion hybrid membranes for fuel cell applications. J Power Sources 196:7363–7371CrossRef Joseph J, Tseng C-Y, Hwang B-J (2011) Phosphonic acid-grafted mesostructured silica/Nafion hybrid membranes for fuel cell applications. J Power Sources 196:7363–7371CrossRef
80.
Zurück zum Zitat Kumar GG, Kim A, Nahm KS, Elizabeth R (2009) Nafion membranes modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC. IJHE 34:9788–9794 Kumar GG, Kim A, Nahm KS, Elizabeth R (2009) Nafion membranes modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC. IJHE 34:9788–9794
81.
Zurück zum Zitat Choi Y, Kim Y, Kim HK, Lee JS (2010) Direct synthesis of sulfonated mesoporous silica as inorganic fillers of proton-conducting organic–inorganic composite membranes. J Membr Sci 357:199–205CrossRef Choi Y, Kim Y, Kim HK, Lee JS (2010) Direct synthesis of sulfonated mesoporous silica as inorganic fillers of proton-conducting organic–inorganic composite membranes. J Membr Sci 357:199–205CrossRef
82.
Zurück zum Zitat Choi J, Wycisk R, Zhang W, Pintauro PN, Lee KM, Mather PT (2010) High Conductivity Perfluorosulfonic Acid Nanofiber Composite Fuel-Cell Membranes. Chemsuschem 3:1245–1248CrossRef Choi J, Wycisk R, Zhang W, Pintauro PN, Lee KM, Mather PT (2010) High Conductivity Perfluorosulfonic Acid Nanofiber Composite Fuel-Cell Membranes. Chemsuschem 3:1245–1248CrossRef
83.
Zurück zum Zitat Kim Y, Choi Y, Kim HK, Lee JS (2010) New sulfonic acid moiety grafted on montmorillonite as filler of organic–inorganic composite membrane for non-humidified proton-exchange membrane fuel cells. J Power Sources 195:4653–4659CrossRef Kim Y, Choi Y, Kim HK, Lee JS (2010) New sulfonic acid moiety grafted on montmorillonite as filler of organic–inorganic composite membrane for non-humidified proton-exchange membrane fuel cells. J Power Sources 195:4653–4659CrossRef
84.
Zurück zum Zitat Bébin P, Caravanier M, Galiano H (2006) Nafion®/clay-SO 3 H membrane for proton exchange membrane fuel cell application. J Membr Sci 278:35–42CrossRef Bébin P, Caravanier M, Galiano H (2006) Nafion®/clay-SO 3 H membrane for proton exchange membrane fuel cell application. J Membr Sci 278:35–42CrossRef
85.
Zurück zum Zitat Buquet CL, Fatyeyeva K, Poncin-Epaillard F, Schaetzel P, Dargent E, Langevin D, Nguyen QT, Marais S (2010) New hybrid membranes for fuel cells: plasma treated laponite based sulfonated polysulfone. J Membr Sci 351:1–10CrossRef Buquet CL, Fatyeyeva K, Poncin-Epaillard F, Schaetzel P, Dargent E, Langevin D, Nguyen QT, Marais S (2010) New hybrid membranes for fuel cells: plasma treated laponite based sulfonated polysulfone. J Membr Sci 351:1–10CrossRef
86.
Zurück zum Zitat Choi J, Lee KM, Wycisk R, Pintauro PN, Mather PT (2010) Sulfonated polysulfone/POSS nanofiber composite membranes for PEM fuel cells. JElS 157:B914–B919 Choi J, Lee KM, Wycisk R, Pintauro PN, Mather PT (2010) Sulfonated polysulfone/POSS nanofiber composite membranes for PEM fuel cells. JElS 157:B914–B919
87.
Zurück zum Zitat Zhang Y, Wang S, Xiao M, Bian S, Meng Y (2009) The silica-doped sulfonated poly (fluorenyl ether ketone) s membrane using hydroxypropyl methyl cellulose as dispersant for high temperature proton exchange membrane fuel cells. IJHE 34:4379–4386 Zhang Y, Wang S, Xiao M, Bian S, Meng Y (2009) The silica-doped sulfonated poly (fluorenyl ether ketone) s membrane using hydroxypropyl methyl cellulose as dispersant for high temperature proton exchange membrane fuel cells. IJHE 34:4379–4386
88.
Zurück zum Zitat Liu Y-L (2009) Preparation and properties of nanocomposite membranes of polybenzimidazole/sulfonated silica nanoparticles for proton exchange membranes. J Membr Sci 332:121–128CrossRef Liu Y-L (2009) Preparation and properties of nanocomposite membranes of polybenzimidazole/sulfonated silica nanoparticles for proton exchange membranes. J Membr Sci 332:121–128CrossRef
89.
Zurück zum Zitat Quartarone E, Magistris A, Mustarelli P, Grandi S, Carollo A, Zukowska G, Garbarczyk J, Nowinski J, Gerbaldi C, Bodoardo S (2009) Pyridine-based PBI composite membranes for PEMFCs. Fuel Cells 9:349–355CrossRef Quartarone E, Magistris A, Mustarelli P, Grandi S, Carollo A, Zukowska G, Garbarczyk J, Nowinski J, Gerbaldi C, Bodoardo S (2009) Pyridine-based PBI composite membranes for PEMFCs. Fuel Cells 9:349–355CrossRef
90.
Zurück zum Zitat Cui X, Zhong S, Wang H (2007) Organic–inorganic hybrid proton exchange membranes based on silicon-containing polyacrylate nanoparticles with phosphotungstic acid. J Power Sources 173:28–35CrossRef Cui X, Zhong S, Wang H (2007) Organic–inorganic hybrid proton exchange membranes based on silicon-containing polyacrylate nanoparticles with phosphotungstic acid. J Power Sources 173:28–35CrossRef
91.
Zurück zum Zitat Adjemian K, Lee S, Srinivasan S, Benziger J, Bocarsly A (2002) Silicon oxide nafion composite membranes for proton-exchange membrane fuel cell operation at 80–140 C. JElS 149:A256–A261 Adjemian K, Lee S, Srinivasan S, Benziger J, Bocarsly A (2002) Silicon oxide nafion composite membranes for proton-exchange membrane fuel cell operation at 80–140 C. JElS 149:A256–A261
92.
Zurück zum Zitat Pereira F, Vallé K, Belleville P, Morin A, Lambert S, Sanchez C (2008) Advanced mesostructured hybrid silica−nafion membranes for high-performance PEM fuel cell. Chem Mater 20:1710–1718CrossRef Pereira F, Vallé K, Belleville P, Morin A, Lambert S, Sanchez C (2008) Advanced mesostructured hybrid silica−nafion membranes for high-performance PEM fuel cell. Chem Mater 20:1710–1718CrossRef
93.
Zurück zum Zitat Mulmi S, Park CH, Kim HK, Lee CH, Park HB, Lee YM (2009) Surfactant-assisted polymer electrolyte nanocomposite membranes for fuel cells. J Membr Sci 344:288–296CrossRef Mulmi S, Park CH, Kim HK, Lee CH, Park HB, Lee YM (2009) Surfactant-assisted polymer electrolyte nanocomposite membranes for fuel cells. J Membr Sci 344:288–296CrossRef
94.
Zurück zum Zitat Shao Z-G, Joghee P, Hsing I-M (2004) Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells. J Membr Sci 229:43–51CrossRef Shao Z-G, Joghee P, Hsing I-M (2004) Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells. J Membr Sci 229:43–51CrossRef
95.
Zurück zum Zitat Chang J-H, Park JH, Park G-G, Kim C-S, Park OO (2003) Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials. J Power Sources 124:18–25CrossRef Chang J-H, Park JH, Park G-G, Kim C-S, Park OO (2003) Proton-conducting composite membranes derived from sulfonated hydrocarbon and inorganic materials. J Power Sources 124:18–25CrossRef
96.
Zurück zum Zitat Wilhelm M, Jeske M, Marschall R, Cavalcanti WL, Tölle P, Köhler C, Koch D, Frauenheim T, Grathwohl G, Caro J (2008) New proton conducting hybrid membranes for HT-PEMFC systems based on polysiloxanes and SO 3 H-functionalized mesoporous Si-MCM-41 particles. J Membr Sci 316:164–175CrossRef Wilhelm M, Jeske M, Marschall R, Cavalcanti WL, Tölle P, Köhler C, Koch D, Frauenheim T, Grathwohl G, Caro J (2008) New proton conducting hybrid membranes for HT-PEMFC systems based on polysiloxanes and SO 3 H-functionalized mesoporous Si-MCM-41 particles. J Membr Sci 316:164–175CrossRef
97.
Zurück zum Zitat Kim YM, Choi SH, Lee HC, Hong MZ, Kim K, Lee H-I (2004) Organic–inorganic composite membranes as addition of SiO2 for high temperature-operation in polymer electrolyte membrane fuel cells (PEMFCs). Electrochim Acta 49:4787–4796CrossRef Kim YM, Choi SH, Lee HC, Hong MZ, Kim K, Lee H-I (2004) Organic–inorganic composite membranes as addition of SiO2 for high temperature-operation in polymer electrolyte membrane fuel cells (PEMFCs). Electrochim Acta 49:4787–4796CrossRef
Metadaten
Titel
Organic/Silica Nanocomposite Membranes Applicable to Green Chemistry
verfasst von
Mashallah Rezakazemi
Amir Dashti
Nasibeh Hajilary
Saeed Shirazian
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-05399-4_22

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.