Skip to main content
Erschienen in: Journal of Computational Electronics 4/2022

11.05.2022

OTA and CDTA-based new memristor-less meminductor emulators and their applications

verfasst von: Aneet Singh, Shireesh Kumar Rai

Erschienen in: Journal of Computational Electronics | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents floating decremental and incremental meminductor emulators using operational transconductance amplifiers (OTAs), a current differencing transconductance amplifier (CDTA), and two grounded capacitors. The proposed designs are very simple in which a decremental meminductor emulator is converted into an incremental meminductor emulator by interchanging the input terminals of one of the OTAs. Pinched hysteresis loops have been obtained at different frequencies that verify the workability of the design. Non-volatility tests have also been performed to know the ability to remember the past history. All simulations have been done by the LTspice simulation tool of Analog Devices using 0.18 μm technology parameters. The proposed meminductor emulators are utilized in the design of a chaotic oscillator and adaptive learning circuit. The simulation results obtained by the chaotic oscillator and adaptive learning circuit verify the efficacy of the proposed design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRef Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRef
2.
Zurück zum Zitat Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nat. Publ. Group 453(7191), 80 (2008) Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nat. Publ. Group 453(7191), 80 (2008)
3.
Zurück zum Zitat Yu, D., ChingIu, H.H., Fitch, A.L., Liang, Y.: A floating memristor emulator based relaxation oscillator. IEEE Trans. Circuits Syst. I 61(10), 2888–2896 (2014)CrossRef Yu, D., ChingIu, H.H., Fitch, A.L., Liang, Y.: A floating memristor emulator based relaxation oscillator. IEEE Trans. Circuits Syst. I 61(10), 2888–2896 (2014)CrossRef
4.
Zurück zum Zitat Ranjan, R.K., Rani, N., Pal, R., Paul, S.K., Kanyal, G.: Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application. Microelectron. J. 60, 119–128 (2017)CrossRef Ranjan, R.K., Rani, N., Pal, R., Paul, S.K., Kanyal, G.: Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application. Microelectron. J. 60, 119–128 (2017)CrossRef
5.
Zurück zum Zitat Ranjan, R.K., Raj, N., Bhuwal, N., Khateb, F.: Single DVCCTA based high frequency incremental/decremental memristor emulator and its application. AEU-Int. J. Electron. Commun. 82, 177–190 (2017)CrossRef Ranjan, R.K., Raj, N., Bhuwal, N., Khateb, F.: Single DVCCTA based high frequency incremental/decremental memristor emulator and its application. AEU-Int. J. Electron. Commun. 82, 177–190 (2017)CrossRef
6.
Zurück zum Zitat Kanyal, G., Kumar, P., Paul, S.K., Kumar, A.: OTA based high frequency tunable resistorless grounded and floating memristor emulators. AEU-Int. J. Electron. Commun. 92, 124–145 (2018)CrossRef Kanyal, G., Kumar, P., Paul, S.K., Kumar, A.: OTA based high frequency tunable resistorless grounded and floating memristor emulators. AEU-Int. J. Electron. Commun. 92, 124–145 (2018)CrossRef
7.
Zurück zum Zitat Solan, E., Ochs, K.: Wave digital emulation of general memristors. Int. J. Circuit Theory Appl. 46, 2011–2027 (2018)CrossRef Solan, E., Ochs, K.: Wave digital emulation of general memristors. Int. J. Circuit Theory Appl. 46, 2011–2027 (2018)CrossRef
8.
Zurück zum Zitat Vista, J., Ranjan, A.: A simple floating MOS-memristor for high-frequency applications. IEEE Trans. Integr. Syst. 27(5), 1186–1195 (2019) Vista, J., Ranjan, A.: A simple floating MOS-memristor for high-frequency applications. IEEE Trans. Integr. Syst. 27(5), 1186–1195 (2019)
9.
Zurück zum Zitat Ventra, M.D., Pershin, Y.V., Chua, L.O.: Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)CrossRef Ventra, M.D., Pershin, Y.V., Chua, L.O.: Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)CrossRef
10.
Zurück zum Zitat Pershin, Y.V., Ventra, M.D.: Memristive circuits simulate memcapacitors and meminductors. Electron. Lett. 46(7), 517–518 (2010)CrossRef Pershin, Y.V., Ventra, M.D.: Memristive circuits simulate memcapacitors and meminductors. Electron. Lett. 46(7), 517–518 (2010)CrossRef
11.
Zurück zum Zitat Biolek, D., Biolkova, V., Kolka, Z.: Mutators simulating memcapacitors and meminductors. IEEE Asia Pacific Conference on Circuits and Systems, pp. 800–803 (2010). Biolek, D., Biolkova, V., Kolka, Z.: Mutators simulating memcapacitors and meminductors. IEEE Asia Pacific Conference on Circuits and Systems, pp. 800–803 (2010).
12.
Zurück zum Zitat Biolek, D., Biolek, Z., Biolkova, V.: PSPICE modelling of meminductor. Analog. Integr. Circ. Sig. Process. 66(1), 129–137 (2011)MATHCrossRef Biolek, D., Biolek, Z., Biolkova, V.: PSPICE modelling of meminductor. Analog. Integr. Circ. Sig. Process. 66(1), 129–137 (2011)MATHCrossRef
13.
Zurück zum Zitat Biolek, D., Ventra, M.D., Pershin, Y.V.: Reliable SPICE simulations of memristors, memcapacitors and meminductors. Radioengineering 22(4), 945–968 (2013) Biolek, D., Ventra, M.D., Pershin, Y.V.: Reliable SPICE simulations of memristors, memcapacitors and meminductors. Radioengineering 22(4), 945–968 (2013)
14.
Zurück zum Zitat Pershin, Y.V., Ventra, M.D.: Emulation of floating memcapacitors and meminductors using current conveyors. Electron. Lett. 47(4), 243–244 (2011)CrossRef Pershin, Y.V., Ventra, M.D.: Emulation of floating memcapacitors and meminductors using current conveyors. Electron. Lett. 47(4), 243–244 (2011)CrossRef
15.
Zurück zum Zitat Yu, D., Liang, Y., Iu, H.C., Chua, L.O.: A universal mutator for transformations among memristor, memcapacitor, and meminductor. IEEE Trans. Circuits Syst. II. 61(10), 758–762 (2014)CrossRef Yu, D., Liang, Y., Iu, H.C., Chua, L.O.: A universal mutator for transformations among memristor, memcapacitor, and meminductor. IEEE Trans. Circuits Syst. II. 61(10), 758–762 (2014)CrossRef
16.
Zurück zum Zitat Liang, Y., Chen, H., Yu, D.S.: A practical implementation of a floating memristor-less meminductor emulator. IEEE Trans. Circuits Syst. II. 61(5), 299–303 (2014)CrossRef Liang, Y., Chen, H., Yu, D.S.: A practical implementation of a floating memristor-less meminductor emulator. IEEE Trans. Circuits Syst. II. 61(5), 299–303 (2014)CrossRef
17.
Zurück zum Zitat Sah, MPd., Budhathoki, R.K., Yang, C., Kim, H.: Mutator-based meminductor emulator for circuit applications. Circuits Syst. Signal Process. 33, 2363–2383 (2014)CrossRef Sah, MPd., Budhathoki, R.K., Yang, C., Kim, H.: Mutator-based meminductor emulator for circuit applications. Circuits Syst. Signal Process. 33, 2363–2383 (2014)CrossRef
18.
Zurück zum Zitat Sah, MPd., Budhathoki, R.K., Yang, C., Kim, H.: Charge controlled meminductor emulator. J. Semicond. Technol. Sci. 14(6), 750–754 (2014)CrossRef Sah, MPd., Budhathoki, R.K., Yang, C., Kim, H.: Charge controlled meminductor emulator. J. Semicond. Technol. Sci. 14(6), 750–754 (2014)CrossRef
19.
Zurück zum Zitat Sah, M. Pd., Budhathoki, R. K., Yang, C., Kim, H.: A mutator-based meminductor emulator circuit. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2249–2252 (2014). Sah, M. Pd., Budhathoki, R. K., Yang, C., Kim, H.: A mutator-based meminductor emulator circuit. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2249–2252 (2014).
20.
Zurück zum Zitat Fouda, M.E., Radwan, A.G.: Memristor-less current and voltage-controlled meminductor emulators. In: IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 279–282 (2014). Fouda, M.E., Radwan, A.G.: Memristor-less current and voltage-controlled meminductor emulators. In: IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 279–282 (2014).
21.
Zurück zum Zitat Yu, D. S., Liang, Y., Iu, H.H.C., Fernando, T.: An emulator of mutual meminductors. In: International Symposium on Nonlinear Theory and its Applications, pp. 864–867 (2015). Yu, D. S., Liang, Y., Iu, H.H.C., Fernando, T.: An emulator of mutual meminductors. In: International Symposium on Nonlinear Theory and its Applications, pp. 864–867 (2015).
22.
Zurück zum Zitat Fang, Y., Wang, G., Jin, P., Wang, X.: Chaos in meminductor based circuit. Int. J. Bifurcat. Chaos 26(8), 1–14 (2016)MathSciNetMATH Fang, Y., Wang, G., Jin, P., Wang, X.: Chaos in meminductor based circuit. Int. J. Bifurcat. Chaos 26(8), 1–14 (2016)MathSciNetMATH
23.
Zurück zum Zitat Wang, G.-Y., Jin, P.-P., Wang, X.-W., Shen, Y.-R., Yuan, F., Wang, X.-Y.: A flux-controlled model of meminductor and its application in chaotic oscillator. Chin. Phys. B 25, 9 (2016) Wang, G.-Y., Jin, P.-P., Wang, X.-W., Shen, Y.-R., Yuan, F., Wang, X.-Y.: A flux-controlled model of meminductor and its application in chaotic oscillator. Chin. Phys. B 25, 9 (2016)
24.
Zurück zum Zitat Shevchenko, S.N., Pershin, Y.V., Nori, F.: Qubit-based memcapacitors and meminductors. Phys. Rev. Appl. 6(1), 014006112 (2016)CrossRef Shevchenko, S.N., Pershin, Y.V., Nori, F.: Qubit-based memcapacitors and meminductors. Phys. Rev. Appl. 6(1), 014006112 (2016)CrossRef
25.
Zurück zum Zitat Wang, S.-F.: The gyrator for transforming nano memristor into meminductor. Circuit World 42(4), 197–200 (2016)CrossRef Wang, S.-F.: The gyrator for transforming nano memristor into meminductor. Circuit World 42(4), 197–200 (2016)CrossRef
26.
Zurück zum Zitat Babacan, Y.: An operational transconductance amplifier-based memcapacitor and meminductor. Electrica 18(1), 36–38 (2018)MathSciNet Babacan, Y.: An operational transconductance amplifier-based memcapacitor and meminductor. Electrica 18(1), 36–38 (2018)MathSciNet
27.
Zurück zum Zitat Zhao, Q., Wang, C., Zhang, X.: A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit. Chaos 29, 013141114 (2019)MathSciNetMATHCrossRef Zhao, Q., Wang, C., Zhang, X.: A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit. Chaos 29, 013141114 (2019)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Sozen, H., Cam, U.: A novel floating/grounded meminductor emulator. J. Circuits Syst. and Comput. 29(15), 2050247113 (2020)CrossRef Sozen, H., Cam, U.: A novel floating/grounded meminductor emulator. J. Circuits Syst. and Comput. 29(15), 2050247113 (2020)CrossRef
29.
Zurück zum Zitat Ye, X., Wang, X., Zhao, H., Gao, H., Zhang, M.: Extreme multistability in a new hyperchaotic meminductive circuit and its circuit implementation. Eur. Phys. J. Plus 134(5), 1–18 (2019)CrossRef Ye, X., Wang, X., Zhao, H., Gao, H., Zhang, M.: Extreme multistability in a new hyperchaotic meminductive circuit and its circuit implementation. Eur. Phys. J. Plus 134(5), 1–18 (2019)CrossRef
30.
Zurück zum Zitat Vista, J., Ranjan, A.: High frequency meminductor emulator employing VDTA and its application. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(10), 2020–2028 (2019)CrossRef Vista, J., Ranjan, A.: High frequency meminductor emulator employing VDTA and its application. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(10), 2020–2028 (2019)CrossRef
31.
Zurück zum Zitat Yu, D., Zhao, X., Sun, T., Iu, H.H.C., Fernando, T.: A simple floating mutator for emulating memristor, memcapacitor, and meminductor. IEEE Trans. Circuits Syst. II 67(7), 1334–1338 (2019)CrossRef Yu, D., Zhao, X., Sun, T., Iu, H.H.C., Fernando, T.: A simple floating mutator for emulating memristor, memcapacitor, and meminductor. IEEE Trans. Circuits Syst. II 67(7), 1334–1338 (2019)CrossRef
32.
Zurück zum Zitat Taskiran, Z.G.C., Sagbas, M., Ayten, U.E.: A new universal mutator circuit for memcapacitor and meminductor elements. AEU-Int. J. Electron. Commun. 119, 153180111 (2020) Taskiran, Z.G.C., Sagbas, M., Ayten, U.E.: A new universal mutator circuit for memcapacitor and meminductor elements. AEU-Int. J. Electron. Commun. 119, 153180111 (2020)
33.
Zurück zum Zitat Thongdit, P., Chunchay, S., Angkeaw, K.: A meminductor emulator based on flux-controlled model using field programmable analog array. In: 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 51–54 (2020). Thongdit, P., Chunchay, S., Angkeaw, K.: A meminductor emulator based on flux-controlled model using field programmable analog array. In: 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pp. 51–54 (2020).
34.
Zurück zum Zitat Romero, F.J., Escudero, M., Medina-Garcia, A., Morales, D.P.: Meminductor emulator based on a modified Antoniou’s gyrator circuit. Electronics 9(9), 1–10 (2020)CrossRef Romero, F.J., Escudero, M., Medina-Garcia, A., Morales, D.P.: Meminductor emulator based on a modified Antoniou’s gyrator circuit. Electronics 9(9), 1–10 (2020)CrossRef
35.
Zurück zum Zitat Yuan, F., Deng, Y., Li, Y.: A multistable generalized meminductor with coexisting stable pinched hysteresis loops. Int. J. Bifurcat. Chaos 30(2), 2050023 (2020)MathSciNetCrossRef Yuan, F., Deng, Y., Li, Y.: A multistable generalized meminductor with coexisting stable pinched hysteresis loops. Int. J. Bifurcat. Chaos 30(2), 2050023 (2020)MathSciNetCrossRef
36.
Zurück zum Zitat Konal, M., Kacar, F.: Electronically tunable meminductor based on OTA. AEU-Int. J. Electron. Commun. 126, 1–9 (2020)CrossRef Konal, M., Kacar, F.: Electronically tunable meminductor based on OTA. AEU-Int. J. Electron. Commun. 126, 1–9 (2020)CrossRef
37.
Zurück zum Zitat Singh, A., Rai, S.K.: Novel meminductor emulators using operational amplifiers and their applications in chaotic oscillators. J. Circuits Syst. Comput. 30(12), 2150219 (2021)CrossRef Singh, A., Rai, S.K.: Novel meminductor emulators using operational amplifiers and their applications in chaotic oscillators. J. Circuits Syst. Comput. 30(12), 2150219 (2021)CrossRef
38.
Zurück zum Zitat Singh, A., Rai, S.K.: VDCC-based memcapacitor/meminductor emulator and its application in adaptive learning circuit. Iran. J. Sci. Technol. Trans. Electr. Eng. 45, 1151–1163 (2021)CrossRef Singh, A., Rai, S.K.: VDCC-based memcapacitor/meminductor emulator and its application in adaptive learning circuit. Iran. J. Sci. Technol. Trans. Electr. Eng. 45, 1151–1163 (2021)CrossRef
40.
Zurück zum Zitat Chua, L.O.: The genesis of Chua’s circuit. Arch. Elektron. Ubertragungstech 46(4), 250–257 (1992) Chua, L.O.: The genesis of Chua’s circuit. Arch. Elektron. Ubertragungstech 46(4), 250–257 (1992)
42.
Zurück zum Zitat Pershin, Y.V., Fontaine, S.L., Ventra, M.D.: Memristive model of amoeba learning. Phys. Rev. E 82, 021926 (2009)CrossRef Pershin, Y.V., Fontaine, S.L., Ventra, M.D.: Memristive model of amoeba learning. Phys. Rev. E 82, 021926 (2009)CrossRef
43.
Zurück zum Zitat Pershin, Y.V., Ventrai, D.M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 20, 881886 (2010) Pershin, Y.V., Ventrai, D.M.: Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 20, 881886 (2010)
44.
Zurück zum Zitat Wang, F.Z., Chua, L.O., Yang, X., Helian, N., Tetzlaff, R., Schmidt, T., et al.: Adaptive neuromorphic architecture. Neural Netw. 45, 111–116 (2013)CrossRef Wang, F.Z., Chua, L.O., Yang, X., Helian, N., Tetzlaff, R., Schmidt, T., et al.: Adaptive neuromorphic architecture. Neural Netw. 45, 111–116 (2013)CrossRef
Metadaten
Titel
OTA and CDTA-based new memristor-less meminductor emulators and their applications
verfasst von
Aneet Singh
Shireesh Kumar Rai
Publikationsdatum
11.05.2022
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 4/2022
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-022-01889-7

Weitere Artikel der Ausgabe 4/2022

Journal of Computational Electronics 4/2022 Zur Ausgabe

Neuer Inhalt