Skip to main content
Erschienen in: Polymer Bulletin 2/2018

02.05.2017 | Original Paper

Oxidation of polyacrylonitrile nanofiber webs as a precursor for carbon nanofiber: aligned and non-aligned nanofibers

verfasst von: Ezgi Ismar, A. Sezai Sarac

Erschienen in: Polymer Bulletin | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon nanofibers have a great potential for supercapacitor, battery, photocatalytic applications, and supporting material for light weight composite structures. In addition to use as a carbon fiber precursor, oxidized PAN nanofiber can also be used to produce inherently flame-resistant materials. Temperature and time are the major parameters for oxidation stabilization process and it is possible to examine the oxidation efficiency comparing with the Fourier transform infrared spectroscopy-attenuated total reflection (FTIRATR) spectroscopic results for different temperatures and time intervals. Thus, PAN nanofiber production and oxidation process well examined to fabricate desired featured CNFs. The conventional carbon fiber route which includes oxidation and carbonization can be adapted to obtain carbon nanofibers. In this study, several production parameters for PAN-based nanofiber fabrication were investigated intensely and oxidation studies of PAN-based nanofibers were examined to get an approach to oxidation procedure for carbon nanofiber production. Improved quality of precursor of PAN-based nanofiber webs directly affects the final product, carbon nanofiber properties. Thus, PAN-based nanofiber webs were prepared via electrospinning technique with aligned and non-aligned forms. Rotating and fixed collectors were used to diversify the samples and investigate the physical and chemical changes on the samples. FTIRATR spectroscopy was used to record the characteristic peaks of the nanofiber webs before and after oxidation. Nanofiber webs were characterized using DMA for their mechanical properties. Differential scanning calorimeter was used for thermal analysis. During the thermal treatment, nitrile group of PAN converts to C=N and C–N groups through cyclized structure. For all steps, surface morphology of the fibers was observed with scanning electron microscope and average fiber diameter was calculated through the fabrication steps. In this study, not only mechanical properties of the webs were investigated, but also chemical structure of the oxidized webs was studied. Aligned nanofibers have exhibited superior mechanical properties than the non-aligned ones.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Morgan P (2005) Carbon fibers and their composites. Taylor & Francis, Boca RatonCrossRef Morgan P (2005) Carbon fibers and their composites. Taylor & Francis, Boca RatonCrossRef
6.
Zurück zum Zitat Kim C, Yang KS (2003) Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl Phys Lett 83:1216–1218. doi:10.1063/1.1599963 CrossRef Kim C, Yang KS (2003) Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl Phys Lett 83:1216–1218. doi:10.​1063/​1.​1599963 CrossRef
9.
Zurück zum Zitat Chinthaginjala JK, Seshan K, Lefferts L (2007) Preparation and application of carbon-nanofiber based microstructured materials as catalyst supports. Ind Eng Chem Res 46:3968–3978. doi:10.1021/ie061394r CrossRef Chinthaginjala JK, Seshan K, Lefferts L (2007) Preparation and application of carbon-nanofiber based microstructured materials as catalyst supports. Ind Eng Chem Res 46:3968–3978. doi:10.​1021/​ie061394r CrossRef
12.
Zurück zum Zitat Reddy KR, Nakata K, Ochiai T et al (2011) Facile fabrication and photocatalytic application of Ag nanoparticles-TiO2 nanofiber composites. J Nanosci Nanotechnol 11:3692–3695. doi:10.1166/jnn.2011.3805 CrossRef Reddy KR, Nakata K, Ochiai T et al (2011) Facile fabrication and photocatalytic application of Ag nanoparticles-TiO2 nanofiber composites. J Nanosci Nanotechnol 11:3692–3695. doi:10.​1166/​jnn.​2011.​3805 CrossRef
13.
Zurück zum Zitat Reddy KR, Nakata K, Ochiai T et al (2010) Nanofibrous TiO2-core/conjugated polymer-sheath composites: synthesis, structural properties and photocatalytic activity. J Nanosci Nanotechnol 10:7951–7957. doi:10.1166/jnn.2010.3143 CrossRef Reddy KR, Nakata K, Ochiai T et al (2010) Nanofibrous TiO2-core/conjugated polymer-sheath composites: synthesis, structural properties and photocatalytic activity. J Nanosci Nanotechnol 10:7951–7957. doi:10.​1166/​jnn.​2010.​3143 CrossRef
16.
Zurück zum Zitat Mirzaei E, Ai J, Sorouri M et al (2015) Functionalization of PAN-based electrospun carbon nanofibers by acid oxidation: study of structural, electrical and mechanical properties. Fuller Nanotub Carbon Nanostruct 23:930–937. doi:10.1080/1536383X.2015.1020057 CrossRef Mirzaei E, Ai J, Sorouri M et al (2015) Functionalization of PAN-based electrospun carbon nanofibers by acid oxidation: study of structural, electrical and mechanical properties. Fuller Nanotub Carbon Nanostruct 23:930–937. doi:10.​1080/​1536383X.​2015.​1020057 CrossRef
17.
Zurück zum Zitat Ismar E, Sarac AS (2016) Synthesis and characterization of poly (acrylonitrile-co-acrylic acid) as precursor of carbon nanofibers. Polym Adv Technol 27:1383–1388. doi:10.1002/pat.3807 CrossRef Ismar E, Sarac AS (2016) Synthesis and characterization of poly (acrylonitrile-co-acrylic acid) as precursor of carbon nanofibers. Polym Adv Technol 27:1383–1388. doi:10.​1002/​pat.​3807 CrossRef
18.
Zurück zum Zitat Faraji S, Yardim MF, Can DS, Sarac AS (2017) Characterization of polyacrylonitrile, poly(acrylonitrile-co-vinyl acetate), and poly(acrylonitrile-co-itaconic acid) based activated carbon nanofibers. J Appl Polym Sci 134. doi:10.1002/app.44381 Faraji S, Yardim MF, Can DS, Sarac AS (2017) Characterization of polyacrylonitrile, poly(acrylonitrile-co-vinyl acetate), and poly(acrylonitrile-co-itaconic acid) based activated carbon nanofibers. J Appl Polym Sci 134. doi:10.​1002/​app.​44381
19.
21.
Zurück zum Zitat Min L-L, Zhong L-B, Zheng Y-M et al (2016) Functionalized chitosan electrospun nanofiber for effective removal of trace arsenate from water. Sci Rep 6:32480. doi:10.1038/srep32480 CrossRef Min L-L, Zhong L-B, Zheng Y-M et al (2016) Functionalized chitosan electrospun nanofiber for effective removal of trace arsenate from water. Sci Rep 6:32480. doi:10.​1038/​srep32480 CrossRef
28.
Zurück zum Zitat Sarac AS (2016) Nanofibers of conjugated polymers. Pan Stanford, SingaporeCrossRef Sarac AS (2016) Nanofibers of conjugated polymers. Pan Stanford, SingaporeCrossRef
31.
Zurück zum Zitat Xie Z, Niu H, Lin T (2015) Continuous polyacrylonitrile nanofiber yarns: preparation and dry-drawing treatment for carbon nanofiber production. RSC Adv 5:15147–15153. doi:10.1039/C4RA16247A CrossRef Xie Z, Niu H, Lin T (2015) Continuous polyacrylonitrile nanofiber yarns: preparation and dry-drawing treatment for carbon nanofiber production. RSC Adv 5:15147–15153. doi:10.​1039/​C4RA16247A CrossRef
32.
33.
Zurück zum Zitat Salamone JC (1998) Concise polymeric materials encyclopedia. CRC Press, New York Salamone JC (1998) Concise polymeric materials encyclopedia. CRC Press, New York
34.
37.
Zurück zum Zitat Brandrup J, Peebles LH (1968) On the chromophore of polyacrylonitrile. IV. Thermal oxidation of polyacrylonitrile and other nitrile-containing compounds. Macromolecules 1:64–72. doi:10.1021/ma60001a012 CrossRef Brandrup J, Peebles LH (1968) On the chromophore of polyacrylonitrile. IV. Thermal oxidation of polyacrylonitrile and other nitrile-containing compounds. Macromolecules 1:64–72. doi:10.​1021/​ma60001a012 CrossRef
38.
Zurück zum Zitat Friedlander HN, Peebles LH, Brandrup J, Kirby JR (1968) On the chromophore of polyacrylonitrile. VI. Mechanism of color formation in polyacrylonitrile. Macromolecules 1:79–86. doi:10.1021/ma60001a014 CrossRef Friedlander HN, Peebles LH, Brandrup J, Kirby JR (1968) On the chromophore of polyacrylonitrile. VI. Mechanism of color formation in polyacrylonitrile. Macromolecules 1:79–86. doi:10.​1021/​ma60001a014 CrossRef
41.
Zurück zum Zitat Chang-qing LI, Yang X, Hong-jiang Z et al (2015) Effect of oxidized structure on thermal stability of pre-oxidized polyacrylonitrile fiber. Trans Mater Heat Treat 2015(5):35–38 Chang-qing LI, Yang X, Hong-jiang Z et al (2015) Effect of oxidized structure on thermal stability of pre-oxidized polyacrylonitrile fiber. Trans Mater Heat Treat 2015(5):35–38
47.
Zurück zum Zitat Zhou Z, Lai C, Zhang L et al (2009) Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer 50:2999–3006. doi:10.1016/j.polymer.2009.04.058 CrossRef Zhou Z, Lai C, Zhang L et al (2009) Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer 50:2999–3006. doi:10.​1016/​j.​polymer.​2009.​04.​058 CrossRef
49.
Zurück zum Zitat El-Hadi AM, Mohan SD, Davis FJ, Mitchell GR (2014) Enhancing the crystallization and orientation of electrospinning poly (lactic acid) (PLLA) by combining with additives. J Polym Res 21:605. doi:10.1007/s10965-014-0605-2 CrossRef El-Hadi AM, Mohan SD, Davis FJ, Mitchell GR (2014) Enhancing the crystallization and orientation of electrospinning poly (lactic acid) (PLLA) by combining with additives. J Polym Res 21:605. doi:10.​1007/​s10965-014-0605-2 CrossRef
50.
Zurück zum Zitat Fennessey SF (2006) Continuous carbon nanofibers prepared from electrospun polyacrylonitrile precursor fibers. Dr diss available proquest, pp 1–209 Fennessey SF (2006) Continuous carbon nanofibers prepared from electrospun polyacrylonitrile precursor fibers. Dr diss available proquest, pp 1–209
57.
Zurück zum Zitat Ma S, Liu J, Liu Q et al (2016) Investigation of structural conversion and size effect from stretched bundle of electrospun polyacrylonitrile copolymer nanofibers during oxidative stabilization. Mater Des 95:387–397. doi:10.1016/j.matdes.2016.01.134 CrossRef Ma S, Liu J, Liu Q et al (2016) Investigation of structural conversion and size effect from stretched bundle of electrospun polyacrylonitrile copolymer nanofibers during oxidative stabilization. Mater Des 95:387–397. doi:10.​1016/​j.​matdes.​2016.​01.​134 CrossRef
58.
Zurück zum Zitat Kakida H, Tashiro K, Kobayashi M (1996) Mechanism and kinetics of stabilization reaction of polyacrylonitrile and related copolymers I. Relationship between isothermal DSC thermogram and FT/IR spectral change of an acrylonitrile/methacrylic acid copolymer. Polym J 28:30–34. doi:10.1295/polymj.28.30 CrossRef Kakida H, Tashiro K, Kobayashi M (1996) Mechanism and kinetics of stabilization reaction of polyacrylonitrile and related copolymers I. Relationship between isothermal DSC thermogram and FT/IR spectral change of an acrylonitrile/methacrylic acid copolymer. Polym J 28:30–34. doi:10.​1295/​polymj.​28.​30 CrossRef
60.
Zurück zum Zitat Liu J, Zhou P, Zhang L et al (2009) Thermo-chemical reactions occurring during the oxidative stabilization of electrospun polyacrylonitrile precursor nanofibers and the resulting structural conversions. Carbon 47:1087–1095. doi:10.1016/j.carbon.2008.12.033 CrossRef Liu J, Zhou P, Zhang L et al (2009) Thermo-chemical reactions occurring during the oxidative stabilization of electrospun polyacrylonitrile precursor nanofibers and the resulting structural conversions. Carbon 47:1087–1095. doi:10.​1016/​j.​carbon.​2008.​12.​033 CrossRef
61.
Zurück zum Zitat Fitzer E (1989) Carbon fibers and composites pan-based carbon fibers—present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon 27:621–645. doi:10.1016/0008-6223(89)90197-8 CrossRef Fitzer E (1989) Carbon fibers and composites pan-based carbon fibers—present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon 27:621–645. doi:10.​1016/​0008-6223(89)90197-8 CrossRef
Metadaten
Titel
Oxidation of polyacrylonitrile nanofiber webs as a precursor for carbon nanofiber: aligned and non-aligned nanofibers
verfasst von
Ezgi Ismar
A. Sezai Sarac
Publikationsdatum
02.05.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 2/2018
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-017-2043-x

Weitere Artikel der Ausgabe 2/2018

Polymer Bulletin 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.