Skip to main content

2010 | OriginalPaper | Buchkapitel

Packaging for Bio-micro-electro-mechanical Systems (BioMEMS) and Microfluidic Chips

verfasst von : Edward S. Park, Jan Krajniak, Hang Lu

Erschienen in: Nano-Bio- Electronic, Photonic and MEMS Packaging

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the last two decades, fundamental and application-driven research on microfluidics and bio-micro-electro-mechanical systems (BioMEMS) has flourished in academia and industries and has begun to make impact on medicine and biosciences. Packaging of these systems is an integral if not critical part of the device/system design and function. Because the applications and the designs of the chips are wide ranging, it is difficult to achieve a universal packaging scheme that meets the requirements of all applications. Instead, research and manufacturing practices of each type of biochip have come up with specialty techniques. This chapter will review these techniques in the specific contexts of the chip applications, as well as materials requirements. In addition, we will highlight common and advanced practices and point out research needs in these areas.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chin C.D., V. Linder, S.K. Sia. Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab on a Chip 2007;7(1):41–57.CrossRef Chin C.D., V. Linder, S.K. Sia. Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab on a Chip 2007;7(1):41–57.CrossRef
2.
Zurück zum Zitat Yager P., T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, B.H. Weigl. Microfluidic diagnostic technologies for global public health. Nature 2006;442(7101):412–418.CrossRef Yager P., T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, B.H. Weigl. Microfluidic diagnostic technologies for global public health. Nature 2006;442(7101):412–418.CrossRef
3.
Zurück zum Zitat Engler K.H., A. Efstratiou, D. Norn, R.S. Kozlov, I. Selga, T.G. Glushkevich, M. Tam, V.G. Melnikov, I.K. Mazurova, V.E. Kim, G.Y. Tseneva, L.P. Titov, R.C. George. Immunochromatographic strip test for rapid detection of diphtheria toxin: Description and multicenter evaluation in areas of low and high prevalence of diphtheria. Journal of Clinical Microbiology 2002;40(1):80–83.CrossRef Engler K.H., A. Efstratiou, D. Norn, R.S. Kozlov, I. Selga, T.G. Glushkevich, M. Tam, V.G. Melnikov, I.K. Mazurova, V.E. Kim, G.Y. Tseneva, L.P. Titov, R.C. George. Immunochromatographic strip test for rapid detection of diphtheria toxin: Description and multicenter evaluation in areas of low and high prevalence of diphtheria. Journal of Clinical Microbiology 2002;40(1):80–83.CrossRef
4.
Zurück zum Zitat Arai H., B. Petchclai, K. Khupulsup, T. Kurimura, K. Takeda. Evaluation of a rapid immunochromatographic test for detection of antibodies to human immunodeficiency virus. Journal of Clinical Microbiology 1999;37(2):367–370. Arai H., B. Petchclai, K. Khupulsup, T. Kurimura, K. Takeda. Evaluation of a rapid immunochromatographic test for detection of antibodies to human immunodeficiency virus. Journal of Clinical Microbiology 1999;37(2):367–370.
5.
Zurück zum Zitat Patterson K., B. Olsen, C. Thomas, D. Norn, M. Tam, C. Elkins. Development of a rapid immunodiagnostic test for Haemophilus ducreyi. Journal of Clinical Microbiology 2002;40(10):3694–3702.CrossRef Patterson K., B. Olsen, C. Thomas, D. Norn, M. Tam, C. Elkins. Development of a rapid immunodiagnostic test for Haemophilus ducreyi. Journal of Clinical Microbiology 2002;40(10):3694–3702.CrossRef
6.
Zurück zum Zitat Zarakolu P., I. Buchanan, M. Tam, K. Smith, E.W. Hook. Preliminary evaluation of an immunochromatographic strip test for specific Treponema pallidum antibodies. Journal of Clinical Microbiology 2002;40(8):3064–3065.CrossRef Zarakolu P., I. Buchanan, M. Tam, K. Smith, E.W. Hook. Preliminary evaluation of an immunochromatographic strip test for specific Treponema pallidum antibodies. Journal of Clinical Microbiology 2002;40(8):3064–3065.CrossRef
7.
Zurück zum Zitat Martinez A.W., S.T. Phillips, M.J. Butte, G.M. Whitesides. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angewandte Chemie-International Edition 2007;46(8):1318–1320.CrossRef Martinez A.W., S.T. Phillips, M.J. Butte, G.M. Whitesides. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angewandte Chemie-International Edition 2007;46(8):1318–1320.CrossRef
8.
Zurück zum Zitat Martinez A.W., S.T. Phillips, E. Carrilho, S.W. Thomas, H. Sindi, G.M. Whitesides. Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Analytical Chemistry 2008;80(10):3699–3707.CrossRef Martinez A.W., S.T. Phillips, E. Carrilho, S.W. Thomas, H. Sindi, G.M. Whitesides. Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Analytical Chemistry 2008;80(10):3699–3707.CrossRef
9.
Zurück zum Zitat Martinez A.W., S.T. Phillips, G.M. Whitesides. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proceedings of the National Academy of Sciences 2008;105(50):19606–19611.CrossRef Martinez A.W., S.T. Phillips, G.M. Whitesides. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proceedings of the National Academy of Sciences 2008;105(50):19606–19611.CrossRef
10.
Zurück zum Zitat Hintsche R., B. Moller, I. Dransfeld, U. Wollenberger, F. Scheller, B. Hoffmann. Chip Biosensors on Thin-Film Metal-Electrodes. Sensors and Actuators B-Chemical 1991;4(3–4):287–291.CrossRef Hintsche R., B. Moller, I. Dransfeld, U. Wollenberger, F. Scheller, B. Hoffmann. Chip Biosensors on Thin-Film Metal-Electrodes. Sensors and Actuators B-Chemical 1991;4(3–4):287–291.CrossRef
11.
Zurück zum Zitat Shulga A.A., A.P. Soldatkin, A.V. Elskaya, S.V. Dzyadevich, S.V. Patskovsky, V.I. Strikha. Thin-Film Conductometric Biosensors for Glucose and Urea Determination. Biosensors & Bioelectronics 1994;9(3):217–223.CrossRef Shulga A.A., A.P. Soldatkin, A.V. Elskaya, S.V. Dzyadevich, S.V. Patskovsky, V.I. Strikha. Thin-Film Conductometric Biosensors for Glucose and Urea Determination. Biosensors & Bioelectronics 1994;9(3):217–223.CrossRef
12.
Zurück zum Zitat Hunt H.C., J.S. Wilkinson. Optofluidic integration for microanalysis. Microfluidics and Nanofluidics 2008;4(1–2):53–79.CrossRef Hunt H.C., J.S. Wilkinson. Optofluidic integration for microanalysis. Microfluidics and Nanofluidics 2008;4(1–2):53–79.CrossRef
13.
Zurück zum Zitat Cui Y., Q.Q. Wei, H.K. Park, C.M. Lieber. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001;293(5533):1289–1292.CrossRef Cui Y., Q.Q. Wei, H.K. Park, C.M. Lieber. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001;293(5533):1289–1292.CrossRef
14.
Zurück zum Zitat Zheng G.F., F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology 2005;23(10):1294–1301.CrossRef Zheng G.F., F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology 2005;23(10):1294–1301.CrossRef
15.
Zurück zum Zitat Bashir R. BioMEMS: state-of-the-art in detection, opportunities and prospects. Advanced Drug Delivery Reviews 2004;56(11):1565–1586.CrossRef Bashir R. BioMEMS: state-of-the-art in detection, opportunities and prospects. Advanced Drug Delivery Reviews 2004;56(11):1565–1586.CrossRef
16.
Zurück zum Zitat Waggoner P.S., H.G. Craighead. Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab on a Chip 2007;7(10):1238–1255.CrossRef Waggoner P.S., H.G. Craighead. Micro- and nanomechanical sensors for environmental, chemical, and biological detection. Lab on a Chip 2007;7(10):1238–1255.CrossRef
17.
Zurück zum Zitat Fritz J., M.K. Baller, H.P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.J. Guntherodt, C. Gerber, J.K. Gimzewski. Translating biomolecular recognition into nanomechanics. Science 2000;288(5464):316–318.CrossRef Fritz J., M.K. Baller, H.P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.J. Guntherodt, C. Gerber, J.K. Gimzewski. Translating biomolecular recognition into nanomechanics. Science 2000;288(5464):316–318.CrossRef
18.
Zurück zum Zitat Hansen K.M., H.F. Ji, G.H. Wu, R. Datar, R. Cote, A. Majumdar, T. Thundat. Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Analytical Chemistry 2001;73(7):1567–1571.CrossRef Hansen K.M., H.F. Ji, G.H. Wu, R. Datar, R. Cote, A. Majumdar, T. Thundat. Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Analytical Chemistry 2001;73(7):1567–1571.CrossRef
19.
Zurück zum Zitat Gupta A., D. Akin, R. Bashir. Single virus particle mass detection using microresonators with nanoscale thickness. Applied Physics Letters 2004;84(11):1976–1978.CrossRef Gupta A., D. Akin, R. Bashir. Single virus particle mass detection using microresonators with nanoscale thickness. Applied Physics Letters 2004;84(11):1976–1978.CrossRef
20.
Zurück zum Zitat Ilic B., D. Czaplewski, H.G. Craighead, P. Neuzil, C. Campagnolo, C. Batt. Mechanical resonant immunospecific biological detector. Applied Physics Letters 2000;77(3):450–452.CrossRef Ilic B., D. Czaplewski, H.G. Craighead, P. Neuzil, C. Campagnolo, C. Batt. Mechanical resonant immunospecific biological detector. Applied Physics Letters 2000;77(3):450–452.CrossRef
21.
Zurück zum Zitat McKendry R., J.Y. Zhang, Y. Arntz, T. Strunz, M. Hegner, H.P. Lang, M.K. Baller, U. Certa, E. Meyer, H.J. Guntherodt, C. Gerber. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proceedings of the National Academy of Sciences of the United States of America 2002;99(15):9783–9788.CrossRef McKendry R., J.Y. Zhang, Y. Arntz, T. Strunz, M. Hegner, H.P. Lang, M.K. Baller, U. Certa, E. Meyer, H.J. Guntherodt, C. Gerber. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proceedings of the National Academy of Sciences of the United States of America 2002;99(15):9783–9788.CrossRef
22.
Zurück zum Zitat Wu G.H., R.H. Datar, K.M. Hansen, T. Thundat, R.J. Cote, A. Majumdar. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnology 2001;19(9):856–860.CrossRef Wu G.H., R.H. Datar, K.M. Hansen, T. Thundat, R.J. Cote, A. Majumdar. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnology 2001;19(9):856–860.CrossRef
23.
Zurück zum Zitat Burg T.P., M. Godin, S.M. Knudsen, W. Shen, G. Carlson, J.S. Foster, K. Babcock, S.R. Manalis. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 2007;446:1066–1069.CrossRef Burg T.P., M. Godin, S.M. Knudsen, W. Shen, G. Carlson, J.S. Foster, K. Babcock, S.R. Manalis. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 2007;446:1066–1069.CrossRef
24.
Zurück zum Zitat Burg T.P., A.R. Mirza, N. Milovic, C.H. Tsau, G.A. Popescu, J.S. Foster, S.R. Manalis. Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection. Journal of Microelectromechanical Systems 2006;15(6):1466–1476.CrossRef Burg T.P., A.R. Mirza, N. Milovic, C.H. Tsau, G.A. Popescu, J.S. Foster, S.R. Manalis. Vacuum-packaged suspended microchannel resonant mass sensor for biomolecular detection. Journal of Microelectromechanical Systems 2006;15(6):1466–1476.CrossRef
25.
Zurück zum Zitat Fruetel J.A., R.F. Renzi, V.A. VanderNoot, J. Stamps, B.A. Horn, J.A.A. West, S. Ferko, R. Crocker, C.G. Bailey, D. Arnold, B. Wiedenman, W.Y. Choi, D. Yee, I. Shokair, E. Hasselbrink, P. Paul, D. Rakestraw, D. Padgen. Microchip separations of protein biotoxins using an integrated hand-held device. Electrophoresis 2005;26(6):1144–1154.CrossRef Fruetel J.A., R.F. Renzi, V.A. VanderNoot, J. Stamps, B.A. Horn, J.A.A. West, S. Ferko, R. Crocker, C.G. Bailey, D. Arnold, B. Wiedenman, W.Y. Choi, D. Yee, I. Shokair, E. Hasselbrink, P. Paul, D. Rakestraw, D. Padgen. Microchip separations of protein biotoxins using an integrated hand-held device. Electrophoresis 2005;26(6):1144–1154.CrossRef
26.
Zurück zum Zitat Stratis-Cullum D.N., G.D. Griffin, J. Mobley, A.A. Vass, T. Vo-Dinh. A miniature biochip system for detection of aerosolized Bacillus globigii spores. Analytical Chemistry 2003;75(2):275–280.CrossRef Stratis-Cullum D.N., G.D. Griffin, J. Mobley, A.A. Vass, T. Vo-Dinh. A miniature biochip system for detection of aerosolized Bacillus globigii spores. Analytical Chemistry 2003;75(2):275–280.CrossRef
27.
Zurück zum Zitat Psaltis D., S.R. Quake, C.H. Yang. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 2006;442(7101):381–386.CrossRef Psaltis D., S.R. Quake, C.H. Yang. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 2006;442(7101):381–386.CrossRef
28.
Zurück zum Zitat Irawan R., S.C. Tjin, X.Q. Fang, C.Y. Fu. Integration of optical fiber light guide, fluorescence detection system, and multichannel disposable microfluidic chip. Biomedical Microdevices 2007;9(3):413–419.CrossRef Irawan R., S.C. Tjin, X.Q. Fang, C.Y. Fu. Integration of optical fiber light guide, fluorescence detection system, and multichannel disposable microfluidic chip. Biomedical Microdevices 2007;9(3):413–419.CrossRef
29.
Zurück zum Zitat Lin C.H., G.B. Lee, S.H. Chen, G.L. Chang. Micro capillary electrophoresis chips integrated with buried SU-8/SOG optical waveguides for bio-analytical applications. Sensors and Actuators a-Physical 2003;107(2):125–131.CrossRef Lin C.H., G.B. Lee, S.H. Chen, G.L. Chang. Micro capillary electrophoresis chips integrated with buried SU-8/SOG optical waveguides for bio-analytical applications. Sensors and Actuators a-Physical 2003;107(2):125–131.CrossRef
30.
Zurück zum Zitat Kou Q., I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, Y. Chen. On-chip optical components and microfluidic systems. Microelectronic Engineering 2004;73–74:876–880.CrossRef Kou Q., I. Yesilyurt, V. Studer, M. Belotti, E. Cambril, Y. Chen. On-chip optical components and microfluidic systems. Microelectronic Engineering 2004;73–74:876–880.CrossRef
31.
Zurück zum Zitat Misiakos K., S.E. Kakabakos, P.S. Petrou, H.H. Ruf. A monolithic silicon optoelectronic transducer as a real-time affinity biosensor. Analytical Chemistry 2004;76(5):1366–1373.CrossRef Misiakos K., S.E. Kakabakos, P.S. Petrou, H.H. Ruf. A monolithic silicon optoelectronic transducer as a real-time affinity biosensor. Analytical Chemistry 2004;76(5):1366–1373.CrossRef
32.
Zurück zum Zitat Balslev S., A.M. Jorgensen, B. Bilenberg, K.B. Mogensen, D. Snakenborg, O. Geschke, J.P. Kutter, A. Kristensen. Lab-on-a-chip with integrated optical transducers. Lab on a Chip 2006;6(2):213–217.CrossRef Balslev S., A.M. Jorgensen, B. Bilenberg, K.B. Mogensen, D. Snakenborg, O. Geschke, J.P. Kutter, A. Kristensen. Lab-on-a-chip with integrated optical transducers. Lab on a Chip 2006;6(2):213–217.CrossRef
33.
Zurück zum Zitat Dandin M., P. Abshire, E. Smela. Optical filtering technologies for integrated fluorescence sensors. Lab on a Chip 2007;7(8):955–977.CrossRef Dandin M., P. Abshire, E. Smela. Optical filtering technologies for integrated fluorescence sensors. Lab on a Chip 2007;7(8):955–977.CrossRef
34.
Zurück zum Zitat Prakash A.R., S. Adamia, V. Sieben, P. Pilarski, L.M. Pilarski, C.J. Backhouse. Small volume PCR in PDMS biochips with integrated fluid control and vapour barrier. Sensors and Actuators B-Chemical 2006;113(1):398–409.CrossRef Prakash A.R., S. Adamia, V. Sieben, P. Pilarski, L.M. Pilarski, C.J. Backhouse. Small volume PCR in PDMS biochips with integrated fluid control and vapour barrier. Sensors and Actuators B-Chemical 2006;113(1):398–409.CrossRef
35.
Zurück zum Zitat Kaigala G.V., V.N. Hoang, A. Stickel, J. Lauzon, D. Manage, L.M. Pilarski, C.J. Backhouse. An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electrophoresis. Analyst 2008;133(3):331–338.CrossRef Kaigala G.V., V.N. Hoang, A. Stickel, J. Lauzon, D. Manage, L.M. Pilarski, C.J. Backhouse. An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electrophoresis. Analyst 2008;133(3):331–338.CrossRef
36.
Zurück zum Zitat Weibel D.B., M. Kruithof, S. Potenta, S.K. Sia, A. Lee, G.M. Whitesides. Torque-actuated valves for microfluidics. Analytical Chemistry 2005;77(15):4726–4733.CrossRef Weibel D.B., M. Kruithof, S. Potenta, S.K. Sia, A. Lee, G.M. Whitesides. Torque-actuated valves for microfluidics. Analytical Chemistry 2005;77(15):4726–4733.CrossRef
37.
Zurück zum Zitat Burns M.A., B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, D.T. Burke. An integrated nanoliter DNA analysis device. Science 1998;282(5388):484–487.CrossRef Burns M.A., B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, D.T. Burke. An integrated nanoliter DNA analysis device. Science 1998;282(5388):484–487.CrossRef
38.
Zurück zum Zitat Liu R.H., J.N. Yang, R. Lenigk, J. Bonanno, P. Grodzinski. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Analytical Chemistry 2004;76(7):1824–1831.CrossRef Liu R.H., J.N. Yang, R. Lenigk, J. Bonanno, P. Grodzinski. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Analytical Chemistry 2004;76(7):1824–1831.CrossRef
39.
Zurück zum Zitat Pal R., M. Yang, R. Lin, B.N. Johnson, N. Srivastava, S.Z. Razzacki, K.J. Chomistek, D.C. Heldsinger, R.M. Haque, V.M. Ugaz, P.K. Thwar, Z. Chen, K. Alfano, M.B. Yim, M. Krishnan, A.O. Fuller, R.G. Larson, D.T. Burke, M.A. Burns. An integrated microfluidic device for influenza and other genetic analyses. Lab on a Chip 2005;5(10):1024–1032.CrossRef Pal R., M. Yang, R. Lin, B.N. Johnson, N. Srivastava, S.Z. Razzacki, K.J. Chomistek, D.C. Heldsinger, R.M. Haque, V.M. Ugaz, P.K. Thwar, Z. Chen, K. Alfano, M.B. Yim, M. Krishnan, A.O. Fuller, R.G. Larson, D.T. Burke, M.A. Burns. An integrated microfluidic device for influenza and other genetic analyses. Lab on a Chip 2005;5(10):1024–1032.CrossRef
40.
Zurück zum Zitat Fu E., T. Chinowsky, K. Nelson, K. Johnston, T. Edwards, K. Helton, M. Grow, J.W. Miller, P. Yager. SPR imaging-based salivary diagnostics system for the detection of small molecule analytes. Oral-Based Diagnostics. Blackwell Publishing: Oxford, UK, 2007. 335–344. Fu E., T. Chinowsky, K. Nelson, K. Johnston, T. Edwards, K. Helton, M. Grow, J.W. Miller, P. Yager. SPR imaging-based salivary diagnostics system for the detection of small molecule analytes. Oral-Based Diagnostics. Blackwell Publishing: Oxford, UK, 2007. 335–344.
41.
Zurück zum Zitat Velten T., H.H. Ruf, D. Barrow, N. Aspragathos, P. Lazarou, E. Jung, C.K. Malek, M. Richter, J. Kruckow. Packaging of bio-MEMS: Strategies, technologies, and applications. IEEE Transactions on Advanced Packaging 2005;28(4):533–546.CrossRef Velten T., H.H. Ruf, D. Barrow, N. Aspragathos, P. Lazarou, E. Jung, C.K. Malek, M. Richter, J. Kruckow. Packaging of bio-MEMS: Strategies, technologies, and applications. IEEE Transactions on Advanced Packaging 2005;28(4):533–546.CrossRef
42.
Zurück zum Zitat Herr A.E., A.V. Hatch, D.J. Throckmorton, H.M. Tran, J.S. Brennan, W.V. Giannobile, A.K. Singh. Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proceedings of the National Academy of Sciences of the United States of America 2007;104(13):5268–5273.CrossRef Herr A.E., A.V. Hatch, D.J. Throckmorton, H.M. Tran, J.S. Brennan, W.V. Giannobile, A.K. Singh. Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proceedings of the National Academy of Sciences of the United States of America 2007;104(13):5268–5273.CrossRef
43.
Zurück zum Zitat Lagally E.T., J.R. Scherer, R.G. Blazej, N.M. Toriello, B.A. Diep, M. Ramchandani, G.F. Sensabaugh, L.W. Riley, R.A. Mathies. Integrated portable genetic analysis microsystem for pathogen/infectious disease detection. Analytical Chemistry 2004;76(11):3162–3170.CrossRef Lagally E.T., J.R. Scherer, R.G. Blazej, N.M. Toriello, B.A. Diep, M. Ramchandani, G.F. Sensabaugh, L.W. Riley, R.A. Mathies. Integrated portable genetic analysis microsystem for pathogen/infectious disease detection. Analytical Chemistry 2004;76(11):3162–3170.CrossRef
44.
Zurück zum Zitat Wang J., M.P. Chatrathi, A. Mulchandani, W. Chen. Capillary electrophoresis microchips for separation and detection of organophosphate nerve agents. Analytical Chemistry 2001;73(8):1804–1808.CrossRef Wang J., M.P. Chatrathi, A. Mulchandani, W. Chen. Capillary electrophoresis microchips for separation and detection of organophosphate nerve agents. Analytical Chemistry 2001;73(8):1804–1808.CrossRef
45.
Zurück zum Zitat Chinowsky T.M., S.D. Soelberg, P. Baker, N.R. Swanson, P. Kauffman, A. Mactutis, M.S. Grow, R. Atmar, S.S. Yee, C.E. Furlong. Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection. Biosensors & Bioelectronics 2007;22(9–10):2268–2275.CrossRef Chinowsky T.M., S.D. Soelberg, P. Baker, N.R. Swanson, P. Kauffman, A. Mactutis, M.S. Grow, R. Atmar, S.S. Yee, C.E. Furlong. Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection. Biosensors & Bioelectronics 2007;22(9–10):2268–2275.CrossRef
46.
Zurück zum Zitat DeBusschere B.D., G.T.A. Kovacs. Portable cell-based biosensor system using integrated CMOS cell-cartridges. Biosensors & Bioelectronics 2001;16(7–8):543–556.CrossRef DeBusschere B.D., G.T.A. Kovacs. Portable cell-based biosensor system using integrated CMOS cell-cartridges. Biosensors & Bioelectronics 2001;16(7–8):543–556.CrossRef
47.
Zurück zum Zitat Hood L., J.R. Heath, M.E. Phelps, B.Y. Lin. Systems biology and new technologies enable predictive and preventative medicine. Science 2004;306(5696):640–643.CrossRef Hood L., J.R. Heath, M.E. Phelps, B.Y. Lin. Systems biology and new technologies enable predictive and preventative medicine. Science 2004;306(5696):640–643.CrossRef
48.
Zurück zum Zitat Weston A.D., L. Hood. Systems biology, proteomics, and the future of health care: Toward predictive, preventative, and personalized medicine. Journal of Proteome Research 2004;3(2):179–196.CrossRef Weston A.D., L. Hood. Systems biology, proteomics, and the future of health care: Toward predictive, preventative, and personalized medicine. Journal of Proteome Research 2004;3(2):179–196.CrossRef
49.
Zurück zum Zitat Bhattacharyya A., C.M. Klapperich. Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples. Biomedical Microdevices 2007;9(2):245–251.CrossRef Bhattacharyya A., C.M. Klapperich. Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples. Biomedical Microdevices 2007;9(2):245–251.CrossRef
50.
Zurück zum Zitat Linder V., S.K. Sia, G.M. Whitesides. Reagent-loaded cartridges for valveless and automated fluid delivery in microfluidic devices. Analytical Chemistry 2005;77(1):64–71.CrossRef Linder V., S.K. Sia, G.M. Whitesides. Reagent-loaded cartridges for valveless and automated fluid delivery in microfluidic devices. Analytical Chemistry 2005;77(1):64–71.CrossRef
51.
Zurück zum Zitat Grayson A.C.R., R.S. Shawgo, A.M. Johnson, N.T. Flynn, Y.W. Li, M.J. Cima, R. Langer. A BioMEMS review: MEMS technology for physiologically integrated devices. Proceedings of the IEEE 2004;92(1):6–21.CrossRef Grayson A.C.R., R.S. Shawgo, A.M. Johnson, N.T. Flynn, Y.W. Li, M.J. Cima, R. Langer. A BioMEMS review: MEMS technology for physiologically integrated devices. Proceedings of the IEEE 2004;92(1):6–21.CrossRef
52.
Zurück zum Zitat Fonseca M A.M.D.S.J.W.J.K.; Cardiomems, Innc., assignee. Implantable Wireless Sensor for Pressure Measurement within the Heart. US patent 6855115. 2005 Feb 15 Fonseca M A.M.D.S.J.W.J.K.; Cardiomems, Innc., assignee. Implantable Wireless Sensor for Pressure Measurement within the Heart. US patent 6855115. 2005 Feb 15
53.
Zurück zum Zitat Santini J.T.M.J.C.R.S.L.; MIT, assignee. Microchip Drug Delivery Devices. US. 1998 Aug 25 Santini J.T.M.J.C.R.S.L.; MIT, assignee. Microchip Drug Delivery Devices. US. 1998 Aug 25
54.
Zurück zum Zitat Kudo H., T. Sawada, E. Kazawa, H. Yoshida, Y. Iwasaki, K. Mitsubayashi. A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques. Biosensors & Bioelectronics 2006;22(4):558–562.CrossRef Kudo H., T. Sawada, E. Kazawa, H. Yoshida, Y. Iwasaki, K. Mitsubayashi. A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques. Biosensors & Bioelectronics 2006;22(4):558–562.CrossRef
55.
Zurück zum Zitat Zhao Y.J., S.Q. Li, A. Davidson, B.Z. Yang, Q. Wang, Q. Lin. A MEMS viscometric sensor for continuous glucose monitoring. Journal of Micromechanics and Microengineering 2007;17(12):2528–2537.CrossRef Zhao Y.J., S.Q. Li, A. Davidson, B.Z. Yang, Q. Wang, Q. Lin. A MEMS viscometric sensor for continuous glucose monitoring. Journal of Micromechanics and Microengineering 2007;17(12):2528–2537.CrossRef
56.
Zurück zum Zitat Jauniaux E., A. Watson, O. Ozturk, D. Quick, G. Burton. In-vivo measurement of intrauterine gases and acid-base values early in human pregnancy. Human Reproduction 1999;14(11):2901–2904.CrossRef Jauniaux E., A. Watson, O. Ozturk, D. Quick, G. Burton. In-vivo measurement of intrauterine gases and acid-base values early in human pregnancy. Human Reproduction 1999;14(11):2901–2904.CrossRef
57.
Zurück zum Zitat Prausnitz M.R. Microneedles for transdermal drug delivery. Advanced Drug Delivery Reviews 2004;56(5):581–587.CrossRef Prausnitz M.R. Microneedles for transdermal drug delivery. Advanced Drug Delivery Reviews 2004;56(5):581–587.CrossRef
58.
Zurück zum Zitat Prausnitz M.R., M.G. Allen, I.J. Gujral. Microneedle drug delivery device. US Patent 7, 226, 439; 2007. Prausnitz M.R., M.G. Allen, I.J. Gujral. Microneedle drug delivery device. US Patent 7, 226, 439; 2007.
59.
Zurück zum Zitat Gujral I.J., M.G. Allen, M.R. Prausnitz. Microneedle device for extraction and sensing of bodily fluids. US Patent 7,344,499; 2008. Gujral I.J., M.G. Allen, M.R. Prausnitz. Microneedle device for extraction and sensing of bodily fluids. US Patent 7,344,499; 2008.
60.
Zurück zum Zitat McAllister D.V., P.M. Wang, S.P. Davis, J.H. Park, P.J. Canatella, M.G. Allen, M.R. Prausnitz. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies. Proceedings of the National Academy of Sciences 2003;100(24):13755–13760.CrossRef McAllister D.V., P.M. Wang, S.P. Davis, J.H. Park, P.J. Canatella, M.G. Allen, M.R. Prausnitz. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies. Proceedings of the National Academy of Sciences 2003;100(24):13755–13760.CrossRef
61.
Zurück zum Zitat Li P.Y., J. Shih, R. Lo, S. Saati, R. Agrawal, M.S. Humayun, Y.C. Tai, E. Meng. An electrochemical intraocular drug delivery device. Sensors and Actuators a-Physical 2008;143(1):41–48.CrossRef Li P.Y., J. Shih, R. Lo, S. Saati, R. Agrawal, M.S. Humayun, Y.C. Tai, E. Meng. An electrochemical intraocular drug delivery device. Sensors and Actuators a-Physical 2008;143(1):41–48.CrossRef
62.
Zurück zum Zitat Santini J.T., M.J. Cima, R. Langer. A controlled-release microchip. Nature 1999;397(6717):335–338.CrossRef Santini J.T., M.J. Cima, R. Langer. A controlled-release microchip. Nature 1999;397(6717):335–338.CrossRef
63.
Zurück zum Zitat Voskerician G., R.S. Shawgo, P.A. Hiltner, J.M. Anderson, M.J. Cima, R. Langer. In vivo inflammatory and wound healing effects of gold electrode voltammetry for MEMS micro-reservoir drug delivery device. Ieee Transactions on Biomedical Engineering 2004;51(4):627–635.CrossRef Voskerician G., R.S. Shawgo, P.A. Hiltner, J.M. Anderson, M.J. Cima, R. Langer. In vivo inflammatory and wound healing effects of gold electrode voltammetry for MEMS micro-reservoir drug delivery device. Ieee Transactions on Biomedical Engineering 2004;51(4):627–635.CrossRef
64.
Zurück zum Zitat Razzacki S.Z., P.K. Thwar, M. Yang, V.M. Ugaz, M.A. Burns. Integrated microsystems for controlled drug delivery. Advanced Drug Delivery Reviews 2004;56(2):185–198.CrossRef Razzacki S.Z., P.K. Thwar, M. Yang, V.M. Ugaz, M.A. Burns. Integrated microsystems for controlled drug delivery. Advanced Drug Delivery Reviews 2004;56(2):185–198.CrossRef
65.
Zurück zum Zitat Wu C.C., T. Yasukawa, H. Shiku, T. Matsue. Fabrication of miniature Clark oxygen sensor integrated with microstructure. Sensors and Actuators B-Chemical 2005;110(2):342–349.CrossRef Wu C.C., T. Yasukawa, H. Shiku, T. Matsue. Fabrication of miniature Clark oxygen sensor integrated with microstructure. Sensors and Actuators B-Chemical 2005;110(2):342–349.CrossRef
66.
Zurück zum Zitat Wu H.K., B. Huang, R.N. Zare. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. Lab on a Chip 2005;5(12):1393–1398.CrossRef Wu H.K., B. Huang, R.N. Zare. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. Lab on a Chip 2005;5(12):1393–1398.CrossRef
67.
Zurück zum Zitat Hungar K., M. Gortz, E. Slavcheva, G. Spanier, C. Weidig, W. Mokwa. Production processes for a flexible retina implant (Eurosensors XVIII, Session C6.6). Sensors and Actuators a-Physical 2005;123–24:172–178. Hungar K., M. Gortz, E. Slavcheva, G. Spanier, C. Weidig, W. Mokwa. Production processes for a flexible retina implant (Eurosensors XVIII, Session C6.6). Sensors and Actuators a-Physical 2005;123–24:172–178.
68.
Zurück zum Zitat Schanze T., L. Hesse, C. Lau, N. Greve, W. Haberer, S. Kammer, T. Doerge, A. Rentzos, T. Stieglitz. An optically powered single-channel stimulation implant as test-system for chronic biocompatibility and biostability of miniaturized retinal vision prostheses. Ieee Transactions on Biomedical Engineering 2007;54(6):983–992.CrossRef Schanze T., L. Hesse, C. Lau, N. Greve, W. Haberer, S. Kammer, T. Doerge, A. Rentzos, T. Stieglitz. An optically powered single-channel stimulation implant as test-system for chronic biocompatibility and biostability of miniaturized retinal vision prostheses. Ieee Transactions on Biomedical Engineering 2007;54(6):983–992.CrossRef
69.
Zurück zum Zitat Schwarz M., L. Ewe, R. Hauschild, B.J. Hosticka, J. Huppertz, S. Kolnsberg, W. Mokwa, H.K. Trieu. Single chip CMOS imagers and flexible microelectronic stimulators for a retina implant system. Sensors and Actuators a-Physical 2000;83(1–3):40–46.CrossRef Schwarz M., L. Ewe, R. Hauschild, B.J. Hosticka, J. Huppertz, S. Kolnsberg, W. Mokwa, H.K. Trieu. Single chip CMOS imagers and flexible microelectronic stimulators for a retina implant system. Sensors and Actuators a-Physical 2000;83(1–3):40–46.CrossRef
70.
Zurück zum Zitat Loeb G.E., R.A. Peck, W.H. Moore, K. Hood. BION (TM) system for distributed neural prosthetic interfaces. Medical Engineering & Physics 2001;23(1):9–18.CrossRef Loeb G.E., R.A. Peck, W.H. Moore, K. Hood. BION (TM) system for distributed neural prosthetic interfaces. Medical Engineering & Physics 2001;23(1):9–18.CrossRef
71.
Zurück zum Zitat Weiland J.D., W.T. Liu, M.S. Humayun. Retinal prosthesis. Annual Review of Biomedical Engineering 2005;7:361-401.CrossRef Weiland J.D., W.T. Liu, M.S. Humayun. Retinal prosthesis. Annual Review of Biomedical Engineering 2005;7:361-401.CrossRef
72.
Zurück zum Zitat Schwartz A.B. Cortical Neural Prosthetics. Annual Review of Neuroscience 2004;27(1):487–507.CrossRef Schwartz A.B. Cortical Neural Prosthetics. Annual Review of Neuroscience 2004;27(1):487–507.CrossRef
73.
Zurück zum Zitat Cheung K.C. Implantable microscale neural interfaces. Biomedical Microdevices 2007;9(6):923–938.CrossRef Cheung K.C. Implantable microscale neural interfaces. Biomedical Microdevices 2007;9(6):923–938.CrossRef
74.
Zurück zum Zitat Kipke D.R., R.J. Vetter, J.C. Williams, J.F. Hetke. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans on Rehabilitation Engineering 2003;11(2):151–155.CrossRef Kipke D.R., R.J. Vetter, J.C. Williams, J.F. Hetke. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans on Rehabilitation Engineering 2003;11(2):151–155.CrossRef
75.
Zurück zum Zitat Rutten W.L.C. Selective electrical interfaces with the nervous system. Annual Review of Biomedical Engineering 2002;4(1):407–452.CrossRef Rutten W.L.C. Selective electrical interfaces with the nervous system. Annual Review of Biomedical Engineering 2002;4(1):407–452.CrossRef
76.
Zurück zum Zitat Cogan S.F. Neural Stimulation and Recording Electrodes. Annual Review of Biomedical Engineering 2008;10(1):275–309.CrossRef Cogan S.F. Neural Stimulation and Recording Electrodes. Annual Review of Biomedical Engineering 2008;10(1):275–309.CrossRef
77.
Zurück zum Zitat Tokuda T., Y.L. Pan, A. Uehara, K. Kagawa, M. Nunoshita, J. Ohta. Flexible and extendible neural interface device based on cooperative multi-chip CMOS LSI architecture. Sensors and Actuators a-Physical 2005;122(1):88–98.CrossRef Tokuda T., Y.L. Pan, A. Uehara, K. Kagawa, M. Nunoshita, J. Ohta. Flexible and extendible neural interface device based on cooperative multi-chip CMOS LSI architecture. Sensors and Actuators a-Physical 2005;122(1):88–98.CrossRef
78.
Zurück zum Zitat Smith B., Z.N. Tang, M.W. Johnson, S. Pourmehdi, M.M. Gazdik, J.R. Buckett, P.H. Peckham. An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. Ieee Transactions on Biomedical Engineering 1998;45(4):463–475.CrossRef Smith B., Z.N. Tang, M.W. Johnson, S. Pourmehdi, M.M. Gazdik, J.R. Buckett, P.H. Peckham. An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. Ieee Transactions on Biomedical Engineering 1998;45(4):463–475.CrossRef
79.
Zurück zum Zitat Windecker S., I. Mayer, G. De Pasquale, W. Maier, O. Dirsch, P. De Groot, Y.P. Wu, G. Noll, B. Leskosek, B. Meier, O.M. Hess, C. Working Grp Novel Surface. Stent coating with titanium-nitride-oxide for reduction of neointimal hyperplasia. Circulation 2001;104(8):928–933. Windecker S., I. Mayer, G. De Pasquale, W. Maier, O. Dirsch, P. De Groot, Y.P. Wu, G. Noll, B. Leskosek, B. Meier, O.M. Hess, C. Working Grp Novel Surface. Stent coating with titanium-nitride-oxide for reduction of neointimal hyperplasia. Circulation 2001;104(8):928–933.
80.
Zurück zum Zitat Grube E., U. Gerckens, S. Rowold, R. Muller, G. Selbach, J. Stamm, M. Staberock. Inhibition of in-stent restenosis by the Quanam drug eluting polymer stent; Two year follow-up. Journal of the American College of Cardiology 2001;37(2):74A–74A.CrossRef Grube E., U. Gerckens, S. Rowold, R. Muller, G. Selbach, J. Stamm, M. Staberock. Inhibition of in-stent restenosis by the Quanam drug eluting polymer stent; Two year follow-up. Journal of the American College of Cardiology 2001;37(2):74A–74A.CrossRef
81.
Zurück zum Zitat Hiatt B.L., F. Ikeno, A.C. Yeung, A.J. Carter. Drug-eluting stents for the prevention of restenosis: In quest for the holy grail. Catheterization and Cardiovascular Interventions 2002;55(3):409–417.CrossRef Hiatt B.L., F. Ikeno, A.C. Yeung, A.J. Carter. Drug-eluting stents for the prevention of restenosis: In quest for the holy grail. Catheterization and Cardiovascular Interventions 2002;55(3):409–417.CrossRef
82.
Zurück zum Zitat Allen M. G M.E.J.K.D.J.M.; CardioMEMS, Inc., assignee. Communication wit an Implanted Wireless Sensor. US. 2007 Allen M. G M.E.J.K.D.J.M.; CardioMEMS, Inc., assignee. Communication wit an Implanted Wireless Sensor. US. 2007
83.
Zurück zum Zitat Klose J., E. Rehtanz, C. Rothe, I. Eulitz, V. Guther, W. Beck. Manufacture of titanium implants. Materialwissenschaft Und Werkstofftechnik 2008;39(4–5):304–308.CrossRef Klose J., E. Rehtanz, C. Rothe, I. Eulitz, V. Guther, W. Beck. Manufacture of titanium implants. Materialwissenschaft Und Werkstofftechnik 2008;39(4–5):304–308.CrossRef
84.
Zurück zum Zitat Wiegand U.K.H., J. Potratz, F. Luninghake, G. Taubert, A. Brandes, K.W. Diederich. Electrophysiological characteristics of bipolar membrane carbon leads with and without steroid elution compared with a conventional carbon and a steroid-eluting platinum lead. Pace-Pacing and Clinical Electrophysiology 1996;19(8):1155–1161.CrossRef Wiegand U.K.H., J. Potratz, F. Luninghake, G. Taubert, A. Brandes, K.W. Diederich. Electrophysiological characteristics of bipolar membrane carbon leads with and without steroid elution compared with a conventional carbon and a steroid-eluting platinum lead. Pace-Pacing and Clinical Electrophysiology 1996;19(8):1155–1161.CrossRef
85.
Zurück zum Zitat Wiegand U.K.H., A. Zhdanov, E. Stammwitz, I. Crozier, R.J.J. Claessens, J. Meier, R.J. Bos, F. Bode, J. Potratz. Electrophysiological performance of a bipolar membrane-coated titanium nitride electrode: A randomized comparison of steroid and nonsteroid lead designs. Pace-Pacing and Clinical Electrophysiology 1999;22(6):935–941.CrossRef Wiegand U.K.H., A. Zhdanov, E. Stammwitz, I. Crozier, R.J.J. Claessens, J. Meier, R.J. Bos, F. Bode, J. Potratz. Electrophysiological performance of a bipolar membrane-coated titanium nitride electrode: A randomized comparison of steroid and nonsteroid lead designs. Pace-Pacing and Clinical Electrophysiology 1999;22(6):935–941.CrossRef
86.
Zurück zum Zitat Wiggins M.J., B. Wilkoff, J.M. Anderson, A. Hiltner. Biodegradation of polyether polyurethane inner insulation in bipolar pacemaker leads. Journal of Biomedical Materials Research 2001;58(3):302–307.CrossRef Wiggins M.J., B. Wilkoff, J.M. Anderson, A. Hiltner. Biodegradation of polyether polyurethane inner insulation in bipolar pacemaker leads. Journal of Biomedical Materials Research 2001;58(3):302–307.CrossRef
87.
Zurück zum Zitat Russell R.J., M.V. Pishko, C.C. Gefrides, M.J. McShane, G.L. Cote. A Fluorescence-Based Glucose Biosensor Using Concanavalin A and Dextran Encapsulated in a Poly(ethylene glycol) Hydrogel. Analytical Chemistry 1999;71(15):3126–3132.CrossRef Russell R.J., M.V. Pishko, C.C. Gefrides, M.J. McShane, G.L. Cote. A Fluorescence-Based Glucose Biosensor Using Concanavalin A and Dextran Encapsulated in a Poly(ethylene glycol) Hydrogel. Analytical Chemistry 1999;71(15):3126–3132.CrossRef
88.
Zurück zum Zitat Receveur R.A.M., F.W. Lindemans, N.F. de Rooij. Microsystem technologies for implantable applications. Journal of Micromechanics and Microengineering 2007;17(5):R50–R80.CrossRef Receveur R.A.M., F.W. Lindemans, N.F. de Rooij. Microsystem technologies for implantable applications. Journal of Micromechanics and Microengineering 2007;17(5):R50–R80.CrossRef
89.
Zurück zum Zitat Mokwa W., U. Schnakenberg. Micro-transponder systems for medical applications. Ieee Transactions on Instrumentation and Measurement 2001;50(6):1551–1555.CrossRef Mokwa W., U. Schnakenberg. Micro-transponder systems for medical applications. Ieee Transactions on Instrumentation and Measurement 2001;50(6):1551–1555.CrossRef
90.
Zurück zum Zitat Flick B.B., R. Orglmeister. A portable microsystem-based telemetric pressure and temperature measurement unit. Ieee Transactions on Biomedical Engineering 2000;47(1):12–16.CrossRef Flick B.B., R. Orglmeister. A portable microsystem-based telemetric pressure and temperature measurement unit. Ieee Transactions on Biomedical Engineering 2000;47(1):12–16.CrossRef
91.
Zurück zum Zitat Esashi M., S. Sugiyama, K. Ikeda, Y.L. Wang, H. Miyashita. Vacuum-sealed silicon micromachined pressure sensors. Proceedings of the Ieee 1998;86(8):1627–1639.CrossRef Esashi M., S. Sugiyama, K. Ikeda, Y.L. Wang, H. Miyashita. Vacuum-sealed silicon micromachined pressure sensors. Proceedings of the Ieee 1998;86(8):1627–1639.CrossRef
92.
Zurück zum Zitat Chen P.J., D.C. Rodger, R. Agrawal, S. Saati, E. Meng, R. Varma, M.S. Humayun, Y.C. Tai. Implantable micromechanical parylene-based pressure sensors for unpowered intraocular pressure sensing. Journal of Micromechanics and Microengineering 2007;17(10):1931–1938.CrossRef Chen P.J., D.C. Rodger, R. Agrawal, S. Saati, E. Meng, R. Varma, M.S. Humayun, Y.C. Tai. Implantable micromechanical parylene-based pressure sensors for unpowered intraocular pressure sensing. Journal of Micromechanics and Microengineering 2007;17(10):1931–1938.CrossRef
93.
Zurück zum Zitat Chen L., A. Manz, P.J.R. Day. Total nucleic acid analysis integrated on microfluidic devices. Lab on a Chip 2007;7(11):1413–1423.CrossRef Chen L., A. Manz, P.J.R. Day. Total nucleic acid analysis integrated on microfluidic devices. Lab on a Chip 2007;7(11):1413–1423.CrossRef
94.
Zurück zum Zitat Heyries K.A., M.G. Loughran, D. Hoffmann, A. Homsy, L.J. Blum, C.A. Marquette. Microfluidic biochip for chemiluminescent detection of allergen-specific antibodies. Biosensors & Bioelectronics 2008;23(12):1812–1818.CrossRef Heyries K.A., M.G. Loughran, D. Hoffmann, A. Homsy, L.J. Blum, C.A. Marquette. Microfluidic biochip for chemiluminescent detection of allergen-specific antibodies. Biosensors & Bioelectronics 2008;23(12):1812–1818.CrossRef
95.
Zurück zum Zitat Isoda T., I. Urushibara, M. Sato, H. Uemura, H. Sato, N. Yamauchi. Development of a sensor-array chip with immobilized antibodies and the application of a wireless antigen-screening system. Sensors and Actuators B-Chemical 2008;129(2):958–970.CrossRef Isoda T., I. Urushibara, M. Sato, H. Uemura, H. Sato, N. Yamauchi. Development of a sensor-array chip with immobilized antibodies and the application of a wireless antigen-screening system. Sensors and Actuators B-Chemical 2008;129(2):958–970.CrossRef
96.
Zurück zum Zitat Prakash R., K. Kaler. An integrated genetic analysis microfluidic platform with valves and a PCR chip reusability method to avoid contamination. Microfluidics and Nanofluidics 2007;3(2):177–187.CrossRef Prakash R., K. Kaler. An integrated genetic analysis microfluidic platform with valves and a PCR chip reusability method to avoid contamination. Microfluidics and Nanofluidics 2007;3(2):177–187.CrossRef
97.
Zurück zum Zitat Zhang C.S., J.L. Xu, W.L. Ma, W.L. Zheng. PCR microfluidic devices for DNA amplification. Biotechnology Advances 2006;24(3):243–284.CrossRef Zhang C.S., J.L. Xu, W.L. Ma, W.L. Zheng. PCR microfluidic devices for DNA amplification. Biotechnology Advances 2006;24(3):243–284.CrossRef
98.
Zurück zum Zitat Sethu P., A. Sin, M. Toner. Microfluidic diffusive filter for apheresis (leukapheresis). Lab on a Chip 2006;6(1):83–89.CrossRef Sethu P., A. Sin, M. Toner. Microfluidic diffusive filter for apheresis (leukapheresis). Lab on a Chip 2006;6(1):83–89.CrossRef
99.
Zurück zum Zitat Battrell C. F M.S.B.H.W.J.M.H.C.A.L.W.B.; Micronics, Inc., assignee. Method and System for Microfluidic Manipulation, Amplification and Analysis of Fluirds, for Example, Bacteria Assays and Antiglobulin Testing. US. 2004 Battrell C. F M.S.B.H.W.J.M.H.C.A.L.W.B.; Micronics, Inc., assignee. Method and System for Microfluidic Manipulation, Amplification and Analysis of Fluirds, for Example, Bacteria Assays and Antiglobulin Testing. US. 2004
100.
Zurück zum Zitat Chamot S.R., C. Depeursinge. MEMS for enhanced optical diagnostics in endoscopy. Minimally Invasive Therapy & Allied Technologies 2007;16(2):101–108.CrossRef Chamot S.R., C. Depeursinge. MEMS for enhanced optical diagnostics in endoscopy. Minimally Invasive Therapy & Allied Technologies 2007;16(2):101–108.CrossRef
101.
Zurück zum Zitat Hupert M.L., M.A. Witek, Y. Wang, M.W. Mitchell, Y. Liu, Y. Bejat, D.E. Nikitopoulos, J. Goettert, M.C. Murphy, S.A. Soper. Polymer-based microfluidic devices for biomedical applications. Proceedings of SPIE 2003;4982:52–64.CrossRef Hupert M.L., M.A. Witek, Y. Wang, M.W. Mitchell, Y. Liu, Y. Bejat, D.E. Nikitopoulos, J. Goettert, M.C. Murphy, S.A. Soper. Polymer-based microfluidic devices for biomedical applications. Proceedings of SPIE 2003;4982:52–64.CrossRef
102.
Zurück zum Zitat Mitchell M.W., X. Liu, Y. Bejat, D.E. Nikitopoulos, S.A. Soper, M.C. Murphy. Modeling and validation of a molded polycarbonate continuous flow polymerase chain reaction device. Proceedings of SPIE 2003;4982:83–98.CrossRef Mitchell M.W., X. Liu, Y. Bejat, D.E. Nikitopoulos, S.A. Soper, M.C. Murphy. Modeling and validation of a molded polycarbonate continuous flow polymerase chain reaction device. Proceedings of SPIE 2003;4982:83–98.CrossRef
103.
Zurück zum Zitat Lee D.S., S.H. Park, H.S. Yang, K.H. Chung, T.H. Yoon, S.J. Kim, K. Kim, Y.T. Kim. Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption. Lab on a Chip 2004;4(4):401–407.CrossRef Lee D.S., S.H. Park, H.S. Yang, K.H. Chung, T.H. Yoon, S.J. Kim, K. Kim, Y.T. Kim. Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption. Lab on a Chip 2004;4(4):401–407.CrossRef
104.
Zurück zum Zitat Koh C.G., W. Tan, M.Q. Zhao, A.J. Ricco, Z.H. Fan. Integrating polymerase chain reaction, valving, and electrophoresis in a plastic device for bacterial detection. Analytical Chemistry 2003;75(17):4591–4598.CrossRef Koh C.G., W. Tan, M.Q. Zhao, A.J. Ricco, Z.H. Fan. Integrating polymerase chain reaction, valving, and electrophoresis in a plastic device for bacterial detection. Analytical Chemistry 2003;75(17):4591–4598.CrossRef
105.
Zurück zum Zitat Krishnan M., D.T. Burke, M.A. Burns. Polymerase chain reaction in high surface-to-volume ratio SiO2 microstructures. Analytical Chemistry 2004;76(22):6588–6593.CrossRef Krishnan M., D.T. Burke, M.A. Burns. Polymerase chain reaction in high surface-to-volume ratio SiO2 microstructures. Analytical Chemistry 2004;76(22):6588–6593.CrossRef
106.
Zurück zum Zitat Woolley A.T., D. Hadley, P. Landre, A.J. deMello, R.A. Mathies, M.A. Northrup. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Analytical Chemistry 1996;68(23):4081–4086.CrossRef Woolley A.T., D. Hadley, P. Landre, A.J. deMello, R.A. Mathies, M.A. Northrup. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Analytical Chemistry 1996;68(23):4081–4086.CrossRef
107.
Zurück zum Zitat West J., B. Karamata, B. Lillis, J.P. Gleeson, J. Alderman, J.K. Collins, W. Lane, A. Mathewson, H. Berney. Application of magnetohydrodynamic actuation to continuous flow chemistry. Lab on a Chip 2002;2(4):224–230.CrossRef West J., B. Karamata, B. Lillis, J.P. Gleeson, J. Alderman, J.K. Collins, W. Lane, A. Mathewson, H. Berney. Application of magnetohydrodynamic actuation to continuous flow chemistry. Lab on a Chip 2002;2(4):224–230.CrossRef
108.
Zurück zum Zitat Hong J.W., T. Fujii, M. Seki, T. Yamamoto, I. Endo. Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip. Electrophoresis 2001;22(2):328–333.CrossRef Hong J.W., T. Fujii, M. Seki, T. Yamamoto, I. Endo. Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip. Electrophoresis 2001;22(2):328–333.CrossRef
109.
Zurück zum Zitat Shen K.Y., X.F. Chen, M. Guo, J. Cheng. A microchip-based PCR device using flexible printed circuit technology. Sensors and Actuators B-Chemical 2005;105(2):251–258.CrossRef Shen K.Y., X.F. Chen, M. Guo, J. Cheng. A microchip-based PCR device using flexible printed circuit technology. Sensors and Actuators B-Chemical 2005;105(2):251–258.CrossRef
110.
Zurück zum Zitat Daniel J.H., S. Iqbal, R.B. Millington, D.F. Moore, C.R. Lowe, D.L. Leslie, M.A. Lee, M.J. Pearce. Silicon microchambers for DNA amplification. Sensors and Actuators a-Physical 1998;71(1–2):81–88.CrossRef Daniel J.H., S. Iqbal, R.B. Millington, D.F. Moore, C.R. Lowe, D.L. Leslie, M.A. Lee, M.J. Pearce. Silicon microchambers for DNA amplification. Sensors and Actuators a-Physical 1998;71(1–2):81–88.CrossRef
111.
Zurück zum Zitat Northrup M.A., B. Benett, D. Hadley, P. Landre, S. Lehew, J. Richards, P. Stratton. A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers. Analytical Chemistry 1998;70(5):918–922.CrossRef Northrup M.A., B. Benett, D. Hadley, P. Landre, S. Lehew, J. Richards, P. Stratton. A miniature analytical instrument for nucleic acids based on micromachined silicon reaction chambers. Analytical Chemistry 1998;70(5):918–922.CrossRef
112.
Zurück zum Zitat Sun K., A. Yamaguchi, Y. Ishida, S. Matsuo, H. Misawa. A heater-integrated transparent microchannel chip for continuous-flow PCR. Sensors and Actuators B-Chemical 2002;84(2–3):283–289.CrossRef Sun K., A. Yamaguchi, Y. Ishida, S. Matsuo, H. Misawa. A heater-integrated transparent microchannel chip for continuous-flow PCR. Sensors and Actuators B-Chemical 2002;84(2–3):283–289.CrossRef
113.
Zurück zum Zitat Khandurina J., T.E. McKnight, S.C. Jacobson, L.C. Waters, R.S. Foote, J.M. Ramsey. Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Analytical Chemistry 2000;72(13):2995–3000.CrossRef Khandurina J., T.E. McKnight, S.C. Jacobson, L.C. Waters, R.S. Foote, J.M. Ramsey. Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Analytical Chemistry 2000;72(13):2995–3000.CrossRef
114.
Zurück zum Zitat Lin Y.C., M.Y. Huang, K.C. Young, T.T. Chang, C.Y. Wu. A rapid micro-polymerase chain reaction system for hepatitis C virus amplification. Sensors and Actuators B-Chemical 2000;71(1–2):2–8.CrossRef Lin Y.C., M.Y. Huang, K.C. Young, T.T. Chang, C.Y. Wu. A rapid micro-polymerase chain reaction system for hepatitis C virus amplification. Sensors and Actuators B-Chemical 2000;71(1–2):2–8.CrossRef
115.
Zurück zum Zitat Lin Y.C., C.C. Yang, M.Y. Huang. Simulation and experimental validation of micro polymerase chain reaction chips. Sensors and Actuators B-Chemical 2000;71(1–2):127–133.CrossRef Lin Y.C., C.C. Yang, M.Y. Huang. Simulation and experimental validation of micro polymerase chain reaction chips. Sensors and Actuators B-Chemical 2000;71(1–2):127–133.CrossRef
116.
Zurück zum Zitat Zhou Z.M., D.Y. Liu, R.T. Zhong, Z.P. Dai, D.P. Wu, H. Wang, Y.G. Du, Z.N. Xia, L.P. Zhang, X.D. Mei, B.C. Lin. Determination of SARS-coronavirus by a microfluidic chip system. Electrophoresis 2004;25(17):3032–3039.CrossRef Zhou Z.M., D.Y. Liu, R.T. Zhong, Z.P. Dai, D.P. Wu, H. Wang, Y.G. Du, Z.N. Xia, L.P. Zhang, X.D. Mei, B.C. Lin. Determination of SARS-coronavirus by a microfluidic chip system. Electrophoresis 2004;25(17):3032–3039.CrossRef
117.
Zurück zum Zitat Gulliksen A., L. Solli, F. Karlsen, H. Rogne, E. Hovig, T. Nordstrom, R. Sirevag. Real-time nucleic acid sequence-based amplification in nanoliter volumes. Analytical Chemistry 2004;76(1):9–14.CrossRef Gulliksen A., L. Solli, F. Karlsen, H. Rogne, E. Hovig, T. Nordstrom, R. Sirevag. Real-time nucleic acid sequence-based amplification in nanoliter volumes. Analytical Chemistry 2004;76(1):9–14.CrossRef
118.
Zurück zum Zitat Matsubara Y., K. Kerman, M. Kobayashi, S. Yamamura, Y. Morita, E. Tamiya. Microchamber array based DNA quantification and specific sequence detection from a single copy via PCR in nanoliter volumes. Biosensors & Bioelectronics 2005;20(8):1482–1490.CrossRef Matsubara Y., K. Kerman, M. Kobayashi, S. Yamamura, Y. Morita, E. Tamiya. Microchamber array based DNA quantification and specific sequence detection from a single copy via PCR in nanoliter volumes. Biosensors & Bioelectronics 2005;20(8):1482–1490.CrossRef
119.
Zurück zum Zitat Curcio M., J. Roeraade. Continuous segmented-flow polymerase chain reaction for high-throughput miniaturized DNA amplification. Analytical Chemistry 2003;75(1):1–7.CrossRef Curcio M., J. Roeraade. Continuous segmented-flow polymerase chain reaction for high-throughput miniaturized DNA amplification. Analytical Chemistry 2003;75(1):1–7.CrossRef
120.
Zurück zum Zitat Sethu P., C.H. Mastrangelo. Cast epoxy-based microfluidic systems and their application in biotechnology. Sensors and Actuators B-Chemical 2004;98(2–3):337–346.CrossRef Sethu P., C.H. Mastrangelo. Cast epoxy-based microfluidic systems and their application in biotechnology. Sensors and Actuators B-Chemical 2004;98(2–3):337–346.CrossRef
121.
Zurück zum Zitat Swerdlow H., B.J. Jones, C.T. Wittwer. Fully automated DNA reaction and analysis in a fluidic capillary instrument. Analytical Chemistry 1997;69(5):848–855.CrossRef Swerdlow H., B.J. Jones, C.T. Wittwer. Fully automated DNA reaction and analysis in a fluidic capillary instrument. Analytical Chemistry 1997;69(5):848–855.CrossRef
122.
Zurück zum Zitat Zhang N.Y., E.S. Yeung. On-line coupling of polymerase chain reaction and capillary electrophoresis for automatic DNA typing and HIV-1 diagnosis. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 1998;714(1):3–11.CrossRef Zhang N.Y., E.S. Yeung. On-line coupling of polymerase chain reaction and capillary electrophoresis for automatic DNA typing and HIV-1 diagnosis. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences 1998;714(1):3–11.CrossRef
123.
Zurück zum Zitat Ferrance J.P., Q.R. Wu, B. Giordano, C. Hernandez, Y. Kwok, K. Snow, S. Thibodeau, J.P. Landers. Developments toward a complete micro-total analysis system for Duchenne muscular dystrophy diagnosis. Analytica Chimica Acta 2003;500(1–2):223–236.CrossRef Ferrance J.P., Q.R. Wu, B. Giordano, C. Hernandez, Y. Kwok, K. Snow, S. Thibodeau, J.P. Landers. Developments toward a complete micro-total analysis system for Duchenne muscular dystrophy diagnosis. Analytica Chimica Acta 2003;500(1–2):223–236.CrossRef
124.
Zurück zum Zitat Huhmer A.F.R., J.P. Landers. Noncontact infrared-mediated thermocycling for effective polymerase chain reaction amplification of DNA in nanoliter volumes. Analytical Chemistry 2000;72(21):5507–5512.CrossRef Huhmer A.F.R., J.P. Landers. Noncontact infrared-mediated thermocycling for effective polymerase chain reaction amplification of DNA in nanoliter volumes. Analytical Chemistry 2000;72(21):5507–5512.CrossRef
125.
Zurück zum Zitat Oda R.P., M.A. Strausbauch, A.F.R. Huhmer, N. Borson, S.R. Jurrens, J. Craighead, P.J. Wettstein, B. Eckloff, B. Kline, J.P. Landers. Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA. Analytical Chemistry 1998;70(20):4361–4368.CrossRef Oda R.P., M.A. Strausbauch, A.F.R. Huhmer, N. Borson, S.R. Jurrens, J. Craighead, P.J. Wettstein, B. Eckloff, B. Kline, J.P. Landers. Infrared-mediated thermocycling for ultrafast polymerase chain reaction amplification of DNA. Analytical Chemistry 1998;70(20):4361–4368.CrossRef
126.
Zurück zum Zitat Tanaka Y., M.N. Slyadnev, A. Hibara, M. Tokeshi, T. Kitamori. Non-contact photothermal control of enzyme reactions on a microchip by using a compact diode laser. Journal of Chromatography A 2000;894(1–2):45–51.CrossRef Tanaka Y., M.N. Slyadnev, A. Hibara, M. Tokeshi, T. Kitamori. Non-contact photothermal control of enzyme reactions on a microchip by using a compact diode laser. Journal of Chromatography A 2000;894(1–2):45–51.CrossRef
127.
Zurück zum Zitat Schneegass I., R. Brautigam, J.M. Kohler. Miniaturized flow-through PCR with different template types in a silicon chip thermocycler. Lab on a Chip 2001;1(1):42–49.CrossRef Schneegass I., R. Brautigam, J.M. Kohler. Miniaturized flow-through PCR with different template types in a silicon chip thermocycler. Lab on a Chip 2001;1(1):42–49.CrossRef
128.
Zurück zum Zitat Chou C.F., R. Changrani, P. Roberts, D. Sadler, J. Burdon, F. Zenhausern, S. Lin, A. Mulholland, N. Swami, R. Terbrueggen. A miniaturized cyclic PCR device - modeling and experiments. Microelectronic Engineering 2002;61–62:921–925.CrossRef Chou C.F., R. Changrani, P. Roberts, D. Sadler, J. Burdon, F. Zenhausern, S. Lin, A. Mulholland, N. Swami, R. Terbrueggen. A miniaturized cyclic PCR device - modeling and experiments. Microelectronic Engineering 2002;61–62:921–925.CrossRef
129.
Zurück zum Zitat Liu J., M. Enzelberger, S. Quake. A nanoliter rotary device for polymerase chain reaction. Electrophoresis 2002;23(10):1531–1536.CrossRef Liu J., M. Enzelberger, S. Quake. A nanoliter rotary device for polymerase chain reaction. Electrophoresis 2002;23(10):1531–1536.CrossRef
130.
Zurück zum Zitat Shi Y.N., P.C. Simpson, J.R. Scherer, D. Wexler, C. Skibola, M.T. Smith, R.A. Mathies. Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis. Analytical Chemistry 1999;71(23):5354–5361.CrossRef Shi Y.N., P.C. Simpson, J.R. Scherer, D. Wexler, C. Skibola, M.T. Smith, R.A. Mathies. Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis. Analytical Chemistry 1999;71(23):5354–5361.CrossRef
131.
Zurück zum Zitat Waters L.C., S.C. Jacobson, N. Kroutchinina, J. Khandurina, R.S. Foote, J.M. Ramsey. Multiple sample PCR amplification and electrophoretic analysis on a microchip. Analytical Chemistry 1998;70(24):5172–5176.CrossRef Waters L.C., S.C. Jacobson, N. Kroutchinina, J. Khandurina, R.S. Foote, J.M. Ramsey. Multiple sample PCR amplification and electrophoretic analysis on a microchip. Analytical Chemistry 1998;70(24):5172–5176.CrossRef
132.
Zurück zum Zitat Waters L.C., S.C. Jacobson, N. Kroutchinina, J. Khandurina, R.S. Foote, J.M. Ramsey. Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. Analytical Chemistry 1998;70(1):158–162.CrossRef Waters L.C., S.C. Jacobson, N. Kroutchinina, J. Khandurina, R.S. Foote, J.M. Ramsey. Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. Analytical Chemistry 1998;70(1):158–162.CrossRef
133.
Zurück zum Zitat Perch-Nielsen I.R., D.D. Bang, C.R. Poulsen, J. El-Ali, A. Wolff. Removal of PCR inhibitors using dielectrophoresis as a selective filter in a microsystem. Lab on a Chip 2003;3(3):212–216.CrossRef Perch-Nielsen I.R., D.D. Bang, C.R. Poulsen, J. El-Ali, A. Wolff. Removal of PCR inhibitors using dielectrophoresis as a selective filter in a microsystem. Lab on a Chip 2003;3(3):212–216.CrossRef
134.
Zurück zum Zitat Gascoyne P., C. Mahidol, M. Ruchirawat, J. Satayavivad, P. Watcharasit, F.F. Becker. Microsample preparation by dielectrophoresis: isolation of malaria. Lab on a Chip 2002;2(2):70–75.CrossRef Gascoyne P., C. Mahidol, M. Ruchirawat, J. Satayavivad, P. Watcharasit, F.F. Becker. Microsample preparation by dielectrophoresis: isolation of malaria. Lab on a Chip 2002;2(2):70–75.CrossRef
135.
Zurück zum Zitat Namasivayam V., R.S. Lin, B. Johnson, S. Brahmasandra, Z. Razzacki, D.T. Burke, M.A. Burns. Advances in on-chip photodetection for applications in miniaturized genetic analysis systems. Journal of Micromechanics and Microengineering 2004;14(1):81–90.CrossRef Namasivayam V., R.S. Lin, B. Johnson, S. Brahmasandra, Z. Razzacki, D.T. Burke, M.A. Burns. Advances in on-chip photodetection for applications in miniaturized genetic analysis systems. Journal of Micromechanics and Microengineering 2004;14(1):81–90.CrossRef
136.
Zurück zum Zitat Kumar A., G. Goel, E. Fehrenbach, A.K. Puniya, K. Singh. Microarrays: The technology, analysis and application. Engineering in Life Sciences 2005;5(3):215–222.CrossRef Kumar A., G. Goel, E. Fehrenbach, A.K. Puniya, K. Singh. Microarrays: The technology, analysis and application. Engineering in Life Sciences 2005;5(3):215–222.CrossRef
137.
Zurück zum Zitat Bulyk M.L. DNA microarray technologies for measuring protein-DNA interactions. Current Opinion in Biotechnology 2006;17(4):422–430.CrossRef Bulyk M.L. DNA microarray technologies for measuring protein-DNA interactions. Current Opinion in Biotechnology 2006;17(4):422–430.CrossRef
138.
Zurück zum Zitat Cretich M., F. Damin, G. Pirri, M. Chiari. Protein and peptide arrays: Recent trends and new directions. Biomolecular Engineering 2006;23(2–3):77–88.CrossRef Cretich M., F. Damin, G. Pirri, M. Chiari. Protein and peptide arrays: Recent trends and new directions. Biomolecular Engineering 2006;23(2–3):77–88.CrossRef
139.
Zurück zum Zitat Hoheisel J.D. Microarray technology: beyond transcript profiling and genotype analysis. Nature Reviews Genetics 2006;7(3):200–210.CrossRef Hoheisel J.D. Microarray technology: beyond transcript profiling and genotype analysis. Nature Reviews Genetics 2006;7(3):200–210.CrossRef
140.
Zurück zum Zitat Hultschig C., J. Kreutzberger, H. Seitz, Z. Konthur, K. Bussow, H. Lehrach. Recent advances of protein microarrays. Current Opinion in Chemical Biology 2006;10(1):4–10.CrossRef Hultschig C., J. Kreutzberger, H. Seitz, Z. Konthur, K. Bussow, H. Lehrach. Recent advances of protein microarrays. Current Opinion in Chemical Biology 2006;10(1):4–10.CrossRef
141.
Zurück zum Zitat Stoughton R.B. Applications of DNA microarrays in biology. Annual Review of Biochemistry 2005;74:53–82.CrossRef Stoughton R.B. Applications of DNA microarrays in biology. Annual Review of Biochemistry 2005;74:53–82.CrossRef
142.
Zurück zum Zitat Barbulovic-Nad I., M. Lucente, Y. Sun, M.J. Zhang, A.R. Wheeler, M. Bussmann. Bio-microarray fabrication techniques - A review. Critical Reviews in Biotechnology 2006;26(4):237–259.CrossRef Barbulovic-Nad I., M. Lucente, Y. Sun, M.J. Zhang, A.R. Wheeler, M. Bussmann. Bio-microarray fabrication techniques - A review. Critical Reviews in Biotechnology 2006;26(4):237–259.CrossRef
144.
Zurück zum Zitat Anderson R.C., X. Su, G.J. Bogdan, J. Fenton. A miniature integrated device for automated multistep genetic assays. Nucleic Acids Research 2000;28(12):e60i–vi. Anderson R.C., X. Su, G.J. Bogdan, J. Fenton. A miniature integrated device for automated multistep genetic assays. Nucleic Acids Research 2000;28(12):e60i–vi.
145.
Zurück zum Zitat Lenigk R., R.H. Liu, M. Athavale, Z.J. Chen, D. Ganser, J.N. Yang, C. Rauch, Y.J. Liu, B. Chan, H.N. Yu, M. Ray, R. Marrero, P. Grodzinski. Plastic biochannel hybridization devices: a new concept for microfluidic DNA arrays. Analytical Biochemistry 2002;311(1):40–49.CrossRef Lenigk R., R.H. Liu, M. Athavale, Z.J. Chen, D. Ganser, J.N. Yang, C. Rauch, Y.J. Liu, B. Chan, H.N. Yu, M. Ray, R. Marrero, P. Grodzinski. Plastic biochannel hybridization devices: a new concept for microfluidic DNA arrays. Analytical Biochemistry 2002;311(1):40–49.CrossRef
146.
Zurück zum Zitat Liu J., C. Hansen, S.R. Quake. Solving the "world-to-chip" interface problem with a microfluidic matrix. Analytical Chemistry 2003;75(18):4718–4723.CrossRef Liu J., C. Hansen, S.R. Quake. Solving the "world-to-chip" interface problem with a microfluidic matrix. Analytical Chemistry 2003;75(18):4718–4723.CrossRef
147.
Zurück zum Zitat Martynova L., L.E. Locascio, M. Gaitan, G.W. Kramer, R.G. Christensen, W.A. MacCrehan. Fabrication of plastic microfluid channels by imprinting methods. Analytical Chemistry 1997;69(23):4783–4789.CrossRef Martynova L., L.E. Locascio, M. Gaitan, G.W. Kramer, R.G. Christensen, W.A. MacCrehan. Fabrication of plastic microfluid channels by imprinting methods. Analytical Chemistry 1997;69(23):4783–4789.CrossRef
148.
Zurück zum Zitat Qi S.Z., X.Z. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, S.A. Soper. Microfluidic devices fabricated in poly(methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection. Lab on a Chip 2002;2(2):88–95.CrossRef Qi S.Z., X.Z. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, S.A. Soper. Microfluidic devices fabricated in poly(methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection. Lab on a Chip 2002;2(2):88–95.CrossRef
149.
Zurück zum Zitat Soper S.A., S.M. Ford, S. Qi, R.L. McCarley, K. Kelly, M.C. Murphy. Polymeric microelectromechanical systems. Analytical Chemistry 2000;72(19):642A–651A.CrossRef Soper S.A., S.M. Ford, S. Qi, R.L. McCarley, K. Kelly, M.C. Murphy. Polymeric microelectromechanical systems. Analytical Chemistry 2000;72(19):642A–651A.CrossRef
150.
Zurück zum Zitat Situma C., M. Hashimoto, S.A. Soper. Merging microfluidics with microarray-based bioassays. Biomolecular Engineering 2006;23(5):213–231.CrossRef Situma C., M. Hashimoto, S.A. Soper. Merging microfluidics with microarray-based bioassays. Biomolecular Engineering 2006;23(5):213–231.CrossRef
151.
Zurück zum Zitat Thorsen T., S.J. Maerkl, S.R. Quake. Microfluidic large-scale integration. Science 2002;298(5593):580–584.CrossRef Thorsen T., S.J. Maerkl, S.R. Quake. Microfluidic large-scale integration. Science 2002;298(5593):580–584.CrossRef
152.
Zurück zum Zitat Duffy D.C., J.C. McDonald, O.J.A. Schueller, G.M. Whitesides. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry 1998;70(23):4974–4984.CrossRef Duffy D.C., J.C. McDonald, O.J.A. Schueller, G.M. Whitesides. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Analytical Chemistry 1998;70(23):4974–4984.CrossRef
153.
Zurück zum Zitat Unger M.A., H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 2000;288(5463):113–116.CrossRef Unger M.A., H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 2000;288(5463):113–116.CrossRef
154.
Zurück zum Zitat Marcus J.S., W.F. Anderson, S.R. Quake. Microfluidic single-cell mRNA isolation and analysis. Analytical Chemistry 2006;78(9):3084–3089.CrossRef Marcus J.S., W.F. Anderson, S.R. Quake. Microfluidic single-cell mRNA isolation and analysis. Analytical Chemistry 2006;78(9):3084–3089.CrossRef
155.
Zurück zum Zitat Lee C.C., G.D. Sui, A. Elizarov, C.Y.J. Shu, Y.S. Shin, A.N. Dooley, J. Huang, A. Daridon, P. Wyatt, D. Stout, H.C. Kolb, O.N. Witte, N. Satyamurthy, J.R. Heath, M.E. Phelps, S.R. Quake, H.R. Tseng. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 2005;310(5755):1793–1796.CrossRef Lee C.C., G.D. Sui, A. Elizarov, C.Y.J. Shu, Y.S. Shin, A.N. Dooley, J. Huang, A. Daridon, P. Wyatt, D. Stout, H.C. Kolb, O.N. Witte, N. Satyamurthy, J.R. Heath, M.E. Phelps, S.R. Quake, H.R. Tseng. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics. Science 2005;310(5755):1793–1796.CrossRef
156.
Zurück zum Zitat Balagadde F.K., L.C. You, C.L. Hansen, F.H. Arnold, S.R. Quake. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 2005;309(5731):137–140.CrossRef Balagadde F.K., L.C. You, C.L. Hansen, F.H. Arnold, S.R. Quake. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 2005;309(5731):137–140.CrossRef
157.
Zurück zum Zitat Anderson M.J., C.L. Hansen, S.R. Quake. Phase knowledge enables rational screens for protein crystallization. Proceedings of the National Academy of Sciences of the United States of America 2006;103(45):16746–16751.CrossRef Anderson M.J., C.L. Hansen, S.R. Quake. Phase knowledge enables rational screens for protein crystallization. Proceedings of the National Academy of Sciences of the United States of America 2006;103(45):16746–16751.CrossRef
158.
Zurück zum Zitat Hansen C.L., S. Classen, J.M. Berger, S.R. Quake. A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination. Journal of the American Chemical Society 2006;128(10):3142–3143.CrossRef Hansen C.L., S. Classen, J.M. Berger, S.R. Quake. A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination. Journal of the American Chemical Society 2006;128(10):3142–3143.CrossRef
159.
Zurück zum Zitat Hansen C.L., M.O.A. Sommer, S.R. Quake. Systematic investigation of protein phase behavior with a microfluidic formulator. Proceedings of the National Academy of Sciences of the United States of America 2004;101(40):14431–14436.CrossRef Hansen C.L., M.O.A. Sommer, S.R. Quake. Systematic investigation of protein phase behavior with a microfluidic formulator. Proceedings of the National Academy of Sciences of the United States of America 2004;101(40):14431–14436.CrossRef
161.
Zurück zum Zitat Schorzman D.A., J.M. Desimone, J.P. Rolland, S.R. Quake, R.M. Van Dam. Solvent-Resistant Photocurable “Liquid Teflon” for Microfluidic Device Fabrication. Journal of the American Chemical Society 2004;126(8):2322–2323.CrossRef Schorzman D.A., J.M. Desimone, J.P. Rolland, S.R. Quake, R.M. Van Dam. Solvent-Resistant Photocurable “Liquid Teflon” for Microfluidic Device Fabrication. Journal of the American Chemical Society 2004;126(8):2322–2323.CrossRef
162.
Zurück zum Zitat Melin J., S.R. Quake. Microfluidic large-scale integration: The evolution of design rules for biological automation. Annual Review of Biophysics and Biomolecular Structure 2007;36:213–231.CrossRef Melin J., S.R. Quake. Microfluidic large-scale integration: The evolution of design rules for biological automation. Annual Review of Biophysics and Biomolecular Structure 2007;36:213–231.CrossRef
163.
Zurück zum Zitat Kamotani Y., T. Bersano-Begey, N. Kato, Y.C. Tung, D. Huh, J.W. Song, S. Takayama. Individually programmable cell stretching microwell arrays actuated by a Braille display. Biomaterials 2008;29(17):2646–2655.CrossRef Kamotani Y., T. Bersano-Begey, N. Kato, Y.C. Tung, D. Huh, J.W. Song, S. Takayama. Individually programmable cell stretching microwell arrays actuated by a Braille display. Biomaterials 2008;29(17):2646–2655.CrossRef
164.
Zurück zum Zitat Song J.W., W. Gu, N. Futai, K.A. Warner, J.E. Nor, S. Takayama. Computer-controlled microcirculatory support system for endothelial cell culture and shearing. Analytical Chemistry 2005;77(13):3993–3999.CrossRef Song J.W., W. Gu, N. Futai, K.A. Warner, J.E. Nor, S. Takayama. Computer-controlled microcirculatory support system for endothelial cell culture and shearing. Analytical Chemistry 2005;77(13):3993–3999.CrossRef
165.
Zurück zum Zitat Gu W., X.Y. Zhu, N. Futai, B.S. Cho, S. Takayama. Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proceedings of the National Academy of Sciences of the United States of America 2004;101(45):15861–15866.CrossRef Gu W., X.Y. Zhu, N. Futai, B.S. Cho, S. Takayama. Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proceedings of the National Academy of Sciences of the United States of America 2004;101(45):15861–15866.CrossRef
166.
Zurück zum Zitat Enzelberger M.M., C.L. Hansen, J. Liu, S.R. Quake, C. Ma. Nucleic acid amplification using microfluidic devices, WO/2002/081729. World Intellectual Property Organization; 2002. Enzelberger M.M., C.L. Hansen, J. Liu, S.R. Quake, C. Ma. Nucleic acid amplification using microfluidic devices, WO/2002/081729. World Intellectual Property Organization; 2002.
167.
Zurück zum Zitat Lee C., G. Sui, A. Elizarov, H.C. Kolb, J. Huang, J.R. Heath, M.E. Phelps, S.R. Quake, H. Tseng, P. Wyatt. Microfluidic Devices with Chemical Reaction Circuits. EP Patent 1,838,431; 2007. Lee C., G. Sui, A. Elizarov, H.C. Kolb, J. Huang, J.R. Heath, M.E. Phelps, S.R. Quake, H. Tseng, P. Wyatt. Microfluidic Devices with Chemical Reaction Circuits. EP Patent 1,838,431; 2007.
168.
Zurück zum Zitat El-Ali J., P.K. Sorger, K.F. Jensen. Cells on chips. Nature 2006;442(7101):403–411.CrossRef El-Ali J., P.K. Sorger, K.F. Jensen. Cells on chips. Nature 2006;442(7101):403–411.CrossRef
169.
Zurück zum Zitat Park T.H., M.L. Shuler. Integration of cell culture and microfabrication technology. Biotechnology Progress 2003;19(2):243–253.CrossRef Park T.H., M.L. Shuler. Integration of cell culture and microfabrication technology. Biotechnology Progress 2003;19(2):243–253.CrossRef
170.
Zurück zum Zitat Sims C.E., N.L. Allbritton. Analysis of single mammalian cells on-chip. Lab on a Chip 2007;7(4):423–440.CrossRef Sims C.E., N.L. Allbritton. Analysis of single mammalian cells on-chip. Lab on a Chip 2007;7(4):423–440.CrossRef
171.
Zurück zum Zitat Cheng J.Y., M.H. Yen, C.T. Kuo, T.H. Young. A transparent cell-culture microchamber with a variably controlled concentration gradient generator and flow field rectifier. Biomicrofluidics 2008;2(2):12.CrossRef Cheng J.Y., M.H. Yen, C.T. Kuo, T.H. Young. A transparent cell-culture microchamber with a variably controlled concentration gradient generator and flow field rectifier. Biomicrofluidics 2008;2(2):12.CrossRef
172.
Zurück zum Zitat Petronis S., M. Stangegaard, C.B.V. Christensen, M. Dufva. Transparent polymeric cell culture chip with integrated temperature control and uniform media perfusion. Biotechniques 2006;40(3):368–376.CrossRef Petronis S., M. Stangegaard, C.B.V. Christensen, M. Dufva. Transparent polymeric cell culture chip with integrated temperature control and uniform media perfusion. Biotechniques 2006;40(3):368–376.CrossRef
173.
Zurück zum Zitat Park J., T. Bansal, M. Pinelis, M.M. Maharbiz. A microsystem for sensing and patterning oxidative microgradients during cell culture. Lab on a Chip 2006;6(5):611–622.CrossRef Park J., T. Bansal, M. Pinelis, M.M. Maharbiz. A microsystem for sensing and patterning oxidative microgradients during cell culture. Lab on a Chip 2006;6(5):611–622.CrossRef
174.
Zurück zum Zitat Maharbiz M.M., W.J. Holtz, S. Sharifzadeh, J.D. Keasling, R.T. Howe. A microfabricated electrochemical oxygen generator for high-density cell culture arrays. Journal of Microelectromechanical Systems 2003;12(5):590–599.CrossRef Maharbiz M.M., W.J. Holtz, S. Sharifzadeh, J.D. Keasling, R.T. Howe. A microfabricated electrochemical oxygen generator for high-density cell culture arrays. Journal of Microelectromechanical Systems 2003;12(5):590–599.CrossRef
175.
Zurück zum Zitat Vollmer A.P., R.F. Probstein, R. Gilbert, T. Thorsen. Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium. Lab on a Chip 2005;5(10):1059–1066.CrossRef Vollmer A.P., R.F. Probstein, R. Gilbert, T. Thorsen. Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium. Lab on a Chip 2005;5(10):1059–1066.CrossRef
176.
Zurück zum Zitat Ges I.A., B.L. Ivanov, D.K. Schaffer, E.A. Lima, A.A. Werdich, F.J. Baudenbacher. Thin-film IrOx pH microelectrode for microfluidic-based microsystems. Biosensors & Bioelectronics 2005;21(2):248–256.CrossRef Ges I.A., B.L. Ivanov, D.K. Schaffer, E.A. Lima, A.A. Werdich, F.J. Baudenbacher. Thin-film IrOx pH microelectrode for microfluidic-based microsystems. Biosensors & Bioelectronics 2005;21(2):248–256.CrossRef
177.
Zurück zum Zitat Taff B.M., J. Voldman. A scalable addressable positive-dielectrophoretic cell-sorting array. Analytical Chemistry 2005;77(24):7976–7983.CrossRef Taff B.M., J. Voldman. A scalable addressable positive-dielectrophoretic cell-sorting array. Analytical Chemistry 2005;77(24):7976–7983.CrossRef
178.
Zurück zum Zitat Voldman J., M.L. Gray, M. Toner, M.A. Schmidt. A microfabrication-based dynamic array cytometer. Analytical Chemistry 2002;74(16):3984–3990.CrossRef Voldman J., M.L. Gray, M. Toner, M.A. Schmidt. A microfabrication-based dynamic array cytometer. Analytical Chemistry 2002;74(16):3984–3990.CrossRef
179.
Zurück zum Zitat Wang X.B., J. Yang, Y. Huang, J. Vykoukal, F.F. Becker, P.R.C. Gascoyne. Cell separation by dielectrophoretic field-flow-fractionation. Analytical Chemistry 2000;72(4):832–839.CrossRef Wang X.B., J. Yang, Y. Huang, J. Vykoukal, F.F. Becker, P.R.C. Gascoyne. Cell separation by dielectrophoretic field-flow-fractionation. Analytical Chemistry 2000;72(4):832–839.CrossRef
180.
Zurück zum Zitat Gomez-Sjoberg R., A.A. Leyrat, D.M. Pirone, C.S. Chen, S.R. Quake. Versatile, fully automated, microfluidic cell culture system. Analytical Chemistry 2007;79(22):8557–8563.CrossRef Gomez-Sjoberg R., A.A. Leyrat, D.M. Pirone, C.S. Chen, S.R. Quake. Versatile, fully automated, microfluidic cell culture system. Analytical Chemistry 2007;79(22):8557–8563.CrossRef
181.
Zurück zum Zitat Hung P.J., P.J. Lee, P. Sabounchi, R. Lin, L.P. Lee. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnology and Bioengineering 2005;89(1):1–8.CrossRef Hung P.J., P.J. Lee, P. Sabounchi, R. Lin, L.P. Lee. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnology and Bioengineering 2005;89(1):1–8.CrossRef
182.
Zurück zum Zitat Lii J., W.J. Hsu, H. Parsa, A. Das, R. Rouse, S.K. Sia. Real-time microfluidic system for studying mammalian cells in 3D microenvironments. Analytical Chemistry 2008;80(10):3640–3647.CrossRef Lii J., W.J. Hsu, H. Parsa, A. Das, R. Rouse, S.K. Sia. Real-time microfluidic system for studying mammalian cells in 3D microenvironments. Analytical Chemistry 2008;80(10):3640–3647.CrossRef
183.
Zurück zum Zitat Madou M., J. Zoval, G.Y. Jia, H. Kido, J. Kim, N. Kim. Lab on a CD. Annual Review of Biomedical Engineering 2006;8:601–628.CrossRef Madou M., J. Zoval, G.Y. Jia, H. Kido, J. Kim, N. Kim. Lab on a CD. Annual Review of Biomedical Engineering 2006;8:601–628.CrossRef
184.
Zurück zum Zitat Balaban N.Q., U.S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, B. Geiger. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biology 2001;3(5):466–472.CrossRef Balaban N.Q., U.S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, B. Geiger. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biology 2001;3(5):466–472.CrossRef
185.
Zurück zum Zitat Tan J.L., J. Tien, D.M. Pirone, D.S. Gray, K. Bhadriraju, C.S. Chen. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proceedings of the National Academy of Sciences of the United States of America 2003;100(4):1484–1489.CrossRef Tan J.L., J. Tien, D.M. Pirone, D.S. Gray, K. Bhadriraju, C.S. Chen. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proceedings of the National Academy of Sciences of the United States of America 2003;100(4):1484–1489.CrossRef
186.
Zurück zum Zitat Hellmich W., C. Pelargus, K. Leffhalm, A. Ros, D. Anselmetti. Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology. Electrophoresis 2005;26(19):3689–3696.CrossRef Hellmich W., C. Pelargus, K. Leffhalm, A. Ros, D. Anselmetti. Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology. Electrophoresis 2005;26(19):3689–3696.CrossRef
187.
Zurück zum Zitat Munce N.R., J.Z. Li, P.R. Herman, L. Lilge. Microfabricated system for parallel single-cell capillary electrophoresis. Analytical Chemistry 2004;76(17):4983–4989.CrossRef Munce N.R., J.Z. Li, P.R. Herman, L. Lilge. Microfabricated system for parallel single-cell capillary electrophoresis. Analytical Chemistry 2004;76(17):4983–4989.CrossRef
188.
Zurück zum Zitat Klaus J.W., S.M. George. SiO2 chemical vapor deposition at room temperature using SiCl4 and H2O with an NH3 catalyst. Journal of the Electrochemical Society 2000;147(7):2658–2664.CrossRef Klaus J.W., S.M. George. SiO2 chemical vapor deposition at room temperature using SiCl4 and H2O with an NH3 catalyst. Journal of the Electrochemical Society 2000;147(7):2658–2664.CrossRef
189.
Zurück zum Zitat Senturia S.D. Microsystem Design. Springer Science+Business Media, LLC: New York, 2005. Senturia S.D. Microsystem Design. Springer Science+Business Media, LLC: New York, 2005.
190.
Zurück zum Zitat Lim K.S., W.J. Chang, Y.M. Koo, R. Bashir. Reliable fabrication method of transferable micron scale metal pattern for poly(dimethylsiloxane) metallization. Lab on a Chip 2006;6(4):578–580.CrossRef Lim K.S., W.J. Chang, Y.M. Koo, R. Bashir. Reliable fabrication method of transferable micron scale metal pattern for poly(dimethylsiloxane) metallization. Lab on a Chip 2006;6(4):578–580.CrossRef
191.
Zurück zum Zitat Niu X.Z., S.L. Peng, L.Y. Liu, W.J. Wen, P. Sheng. Characterizing and patterning of PDMS-based conducting composites. Advanced Materials 2007;19(18):2682–2686.CrossRef Niu X.Z., S.L. Peng, L.Y. Liu, W.J. Wen, P. Sheng. Characterizing and patterning of PDMS-based conducting composites. Advanced Materials 2007;19(18):2682–2686.CrossRef
192.
Zurück zum Zitat Bowden N., S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998;393(6681):146–149.CrossRef Bowden N., S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998;393(6681):146–149.CrossRef
193.
Zurück zum Zitat Trau D., J. Jiang, N.J. Sucher. Preservation of the biofunctionality of DNA and protein during microfabrication. Langmuir 2006;22(3):877–881.CrossRef Trau D., J. Jiang, N.J. Sucher. Preservation of the biofunctionality of DNA and protein during microfabrication. Langmuir 2006;22(3):877–881.CrossRef
194.
Zurück zum Zitat Kentsch J., S. Breisch, M. Stezle. Low temperature adhesion bonding for BioMEMS. Journal of Micromechanics and Microengineering 2006;16(4):802–807.CrossRef Kentsch J., S. Breisch, M. Stezle. Low temperature adhesion bonding for BioMEMS. Journal of Micromechanics and Microengineering 2006;16(4):802–807.CrossRef
195.
Zurück zum Zitat Ghafar-Zadeh E., M. Sawan, D. Therriault. Novel direct-write CMOS-based laboratory-on-chip: Design, assembly and experimental results. Sensors and Actuators a-Physical 2007;134(1):27–36.CrossRef Ghafar-Zadeh E., M. Sawan, D. Therriault. Novel direct-write CMOS-based laboratory-on-chip: Design, assembly and experimental results. Sensors and Actuators a-Physical 2007;134(1):27–36.CrossRef
196.
Zurück zum Zitat Zimmermann S., D. Fienbork, A.W. Flounders, D. Liepmann. In-device enzyme immobilization: wafer-level fabrication of an integrated glucose sensor. Sensors and Actuators B-Chemical 2004;99(1):163–173.CrossRef Zimmermann S., D. Fienbork, A.W. Flounders, D. Liepmann. In-device enzyme immobilization: wafer-level fabrication of an integrated glucose sensor. Sensors and Actuators B-Chemical 2004;99(1):163–173.CrossRef
197.
Zurück zum Zitat Linder V., S. Koster, W. Franks, T. Kraus, E. Verpoorte, F. Heer, A. Hierlemann, N.F. de Rooij. Microfluidics/CMOS orthogonal capabilities for cell biology. Biomedical Microdevices 2006;8(2):159–166.CrossRef Linder V., S. Koster, W. Franks, T. Kraus, E. Verpoorte, F. Heer, A. Hierlemann, N.F. de Rooij. Microfluidics/CMOS orthogonal capabilities for cell biology. Biomedical Microdevices 2006;8(2):159–166.CrossRef
198.
Zurück zum Zitat Pan J.Y. Reliability considerations for the BioMEMS designer. Proceedings of the Ieee 2004;92(1):174–184.CrossRef Pan J.Y. Reliability considerations for the BioMEMS designer. Proceedings of the Ieee 2004;92(1):174–184.CrossRef
199.
Zurück zum Zitat Bhagat A.A.S., P. Jothimuthu, A. Pais, I. Papautsky. Re-usable quick-release interconnect for characterization of microfluidic systems. Journal of Micromechanics and Microengineering 2007;17(1):42–49.CrossRef Bhagat A.A.S., P. Jothimuthu, A. Pais, I. Papautsky. Re-usable quick-release interconnect for characterization of microfluidic systems. Journal of Micromechanics and Microengineering 2007;17(1):42–49.CrossRef
200.
Zurück zum Zitat Christensen A.M., D.A. Chang-Yen, B.K. Gale. Characterization of interconnects used in PDMS microfluidic systems. Journal of Micromechanics and Microengineering 2005;15(5):928–934.CrossRef Christensen A.M., D.A. Chang-Yen, B.K. Gale. Characterization of interconnects used in PDMS microfluidic systems. Journal of Micromechanics and Microengineering 2005;15(5):928–934.CrossRef
201.
Zurück zum Zitat Han K.H., R.D. McConnell, C.J. Easley, J.M. Bienvenue, J.P. Ferrance, J.P. Landers, A.B. Frazier. An active microfluidic system packaging technology. Sensors and Actuators B-Chemical 2007;122(1):337–346.CrossRef Han K.H., R.D. McConnell, C.J. Easley, J.M. Bienvenue, J.P. Ferrance, J.P. Landers, A.B. Frazier. An active microfluidic system packaging technology. Sensors and Actuators B-Chemical 2007;122(1):337–346.CrossRef
202.
Zurück zum Zitat Puntambekar A., C.H. Ahn. Self-aligning microfluidic interconnects for glass- and plastic-based microfluidic systems. Journal of Micromechanics and Microengineering 2002;12(1):35–40.CrossRef Puntambekar A., C.H. Ahn. Self-aligning microfluidic interconnects for glass- and plastic-based microfluidic systems. Journal of Micromechanics and Microengineering 2002;12(1):35–40.CrossRef
203.
Zurück zum Zitat Fujii T., Y. Sando, K. Higashino, Y. Fujii. A plug and play microfluidic device. Lab on a Chip 2003;3(3):193–197.CrossRef Fujii T., Y. Sando, K. Higashino, Y. Fujii. A plug and play microfluidic device. Lab on a Chip 2003;3(3):193–197.CrossRef
204.
Zurück zum Zitat Igata E., M. Arundell, H. Morgan, J.M. Cooper. Interconnected reversible lab-on-a-chip technology. Lab on a Chip 2002;2(2):65–69.CrossRef Igata E., M. Arundell, H. Morgan, J.M. Cooper. Interconnected reversible lab-on-a-chip technology. Lab on a Chip 2002;2(2):65–69.CrossRef
205.
Zurück zum Zitat Yuen P.K. SmartBuild–A truly plug-n-play modular microfluidic system. Lab on a Chip 2008;8:1374–1378.CrossRef Yuen P.K. SmartBuild–A truly plug-n-play modular microfluidic system. Lab on a Chip 2008;8:1374–1378.CrossRef
206.
Zurück zum Zitat Shaikh K.A., K.S. Ryu, E.D. Goluch, J.M. Nam, J.W. Liu, S. Thaxton, T.N. Chiesl, A.E. Barron, Y. Lu, C.A. Mirkin, C. Liu. A modular microfluidic architecture for integrated biochemical analysis. Proceedings of the National Academy of Sciences of the United States of America 2005;102(28):9745–9750.CrossRef Shaikh K.A., K.S. Ryu, E.D. Goluch, J.M. Nam, J.W. Liu, S. Thaxton, T.N. Chiesl, A.E. Barron, Y. Lu, C.A. Mirkin, C. Liu. A modular microfluidic architecture for integrated biochemical analysis. Proceedings of the National Academy of Sciences of the United States of America 2005;102(28):9745–9750.CrossRef
207.
Zurück zum Zitat Ko W.H. Packaging of Microfabricated Devices and Systems. Materials Chemistry and Physics 1995;42(3):169–175.CrossRef Ko W.H. Packaging of Microfabricated Devices and Systems. Materials Chemistry and Physics 1995;42(3):169–175.CrossRef
208.
Zurück zum Zitat Murarka S.P. Multilevel interconnections for ULSI and GSI era. Materials Science & Engineering R-Reports 1997;19(3–4):87–151.CrossRef Murarka S.P. Multilevel interconnections for ULSI and GSI era. Materials Science & Engineering R-Reports 1997;19(3–4):87–151.CrossRef
209.
Zurück zum Zitat Tong H.M. Microelectronics Packaging - Present and Future. Materials Chemistry and Physics 1995;40(3):147–161.CrossRef Tong H.M. Microelectronics Packaging - Present and Future. Materials Chemistry and Physics 1995;40(3):147–161.CrossRef
210.
Zurück zum Zitat James C.D., A.J.H. Spence, N.M. Dowell-Mesfin, R.J. Hussain, K.L. Smith, H.G. Craighead, M.S. Isaacson, W. Shain, J.N. Turner. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays. Ieee Transactions on Biomedical Engineering 2004;51(9):1640–1648.CrossRef James C.D., A.J.H. Spence, N.M. Dowell-Mesfin, R.J. Hussain, K.L. Smith, H.G. Craighead, M.S. Isaacson, W. Shain, J.N. Turner. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays. Ieee Transactions on Biomedical Engineering 2004;51(9):1640–1648.CrossRef
211.
Zurück zum Zitat Fair R.B. Digital microfluidics: is a true lab-on-a-chip possible? Microfluidics and Nanofluidics 2007;3(3):245–281.CrossRef Fair R.B. Digital microfluidics: is a true lab-on-a-chip possible? Microfluidics and Nanofluidics 2007;3(3):245–281.CrossRef
212.
Zurück zum Zitat Hartley L., K. Kaler, O. Yadid-Pecht. Hybrid integration of an active pixel sensor and microfluidics for cytometry on a chip. Ieee Transactions on Circuits and Systems I-Regular Papers 2007;54(1):99–110.CrossRef Hartley L., K. Kaler, O. Yadid-Pecht. Hybrid integration of an active pixel sensor and microfluidics for cytometry on a chip. Ieee Transactions on Circuits and Systems I-Regular Papers 2007;54(1):99–110.CrossRef
213.
Zurück zum Zitat Huang Y., J.M. Yang, P.J. Hopkins, S. Kassegne, M. Tirado, A.H. Forster, H. Reese. Separation of simulants of biological warfare agents from blood by a miniaturized dielectrophoresis device. Biomedical Microdevices 2003;5(3):217–225.CrossRef Huang Y., J.M. Yang, P.J. Hopkins, S. Kassegne, M. Tirado, A.H. Forster, H. Reese. Separation of simulants of biological warfare agents from blood by a miniaturized dielectrophoresis device. Biomedical Microdevices 2003;5(3):217–225.CrossRef
214.
Zurück zum Zitat Petrou P.S., I. Moser, G. Jobst. BioMEMS device with integrated microdialysis probe and biosensor array. Biosensors & Bioelectronics 2002;17(10):859–865.CrossRef Petrou P.S., I. Moser, G. Jobst. BioMEMS device with integrated microdialysis probe and biosensor array. Biosensors & Bioelectronics 2002;17(10):859–865.CrossRef
215.
Zurück zum Zitat Piruska A., I. Nikcevic, S.H. Lee, C. Ahn, W.R. Heineman, P.A. Limbach, C.J. Seliskar. The autofluorescence of plastic materials and chips measured under laser irradiation. Lab on a Chip 2005;5(12):1348–1354.CrossRef Piruska A., I. Nikcevic, S.H. Lee, C. Ahn, W.R. Heineman, P.A. Limbach, C.J. Seliskar. The autofluorescence of plastic materials and chips measured under laser irradiation. Lab on a Chip 2005;5(12):1348–1354.CrossRef
216.
Zurück zum Zitat Bliss C.L., J.N. McMullin, C.J. Backhouse. Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis. Lab on a Chip 2007;7(10):1280–1287.CrossRef Bliss C.L., J.N. McMullin, C.J. Backhouse. Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis. Lab on a Chip 2007;7(10):1280–1287.CrossRef
217.
Zurück zum Zitat Lee K.S., H.L.T. Lee, R.J. Ram. Polymer waveguide backplanes for optical sensor interfaces in microfluidics. Lab on a Chip 2007;7(11):1539–1545.CrossRef Lee K.S., H.L.T. Lee, R.J. Ram. Polymer waveguide backplanes for optical sensor interfaces in microfluidics. Lab on a Chip 2007;7(11):1539–1545.CrossRef
218.
Zurück zum Zitat Chung K., M.M. Crane, H. Lu. Automated on-chip rapid microscopy, phenotyping and sorting of C.elegans. Nat Meth 2008;5(7):637–643.CrossRef Chung K., M.M. Crane, H. Lu. Automated on-chip rapid microscopy, phenotyping and sorting of C.elegans. Nat Meth 2008;5(7):637–643.CrossRef
219.
Zurück zum Zitat El-Ali J., S. Gaudet, A. Gunther, P.K. Sorger, K.F. Jensen. Cell stimulus and lysis in a microfluidic device with segmented gas-liquid flow. Analytical Chemistry 2005;77(11):3629–3636.CrossRef El-Ali J., S. Gaudet, A. Gunther, P.K. Sorger, K.F. Jensen. Cell stimulus and lysis in a microfluidic device with segmented gas-liquid flow. Analytical Chemistry 2005;77(11):3629–3636.CrossRef
220.
Zurück zum Zitat Voskerician G., M.S. Shive, R.S. Shawgo, H. von Recum, J.M. Anderson, M.J. Cima, R. Langer. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials 2003;24(11):1959–1967.CrossRef Voskerician G., M.S. Shive, R.S. Shawgo, H. von Recum, J.M. Anderson, M.J. Cima, R. Langer. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials 2003;24(11):1959–1967.CrossRef
221.
Zurück zum Zitat Brischwein M., E.R. Motrescu, E. Cabala, A.M. Otto, H. Grothe, B. Wolf. Functional cellular assays with multiparametric silicon sensor chips. Lab on a Chip 2003;3(4):234–240.CrossRef Brischwein M., E.R. Motrescu, E. Cabala, A.M. Otto, H. Grothe, B. Wolf. Functional cellular assays with multiparametric silicon sensor chips. Lab on a Chip 2003;3(4):234–240.CrossRef
222.
Zurück zum Zitat Szarowski D.H., M.D. Andersen, S. Retterer, A.J. Spence, M. Isaacson, H.G. Craighead, J.N. Turner, W. Shain. Brain responses to micro-machined silicon devices. Brain Research 2003;983(1–2):23–35.CrossRef Szarowski D.H., M.D. Andersen, S. Retterer, A.J. Spence, M. Isaacson, H.G. Craighead, J.N. Turner, W. Shain. Brain responses to micro-machined silicon devices. Brain Research 2003;983(1–2):23–35.CrossRef
224.
Zurück zum Zitat Shawgo R.S., A.C.R. Grayson, Y.W. Li, M.J. Cima. BioMEMS for drug delivery. Current Opinion in Solid State & Materials Science 2002;6(4):329–334.CrossRef Shawgo R.S., A.C.R. Grayson, Y.W. Li, M.J. Cima. BioMEMS for drug delivery. Current Opinion in Solid State & Materials Science 2002;6(4):329–334.CrossRef
225.
Zurück zum Zitat Fallahi D., H. Mirzadeh, M.T. Khorasani. Physical, mechanical, and biocompatibility evaluation of three different types of silicone rubber. Journal of Applied Polymer Science 2003;88(10):2522–2529.CrossRef Fallahi D., H. Mirzadeh, M.T. Khorasani. Physical, mechanical, and biocompatibility evaluation of three different types of silicone rubber. Journal of Applied Polymer Science 2003;88(10):2522–2529.CrossRef
226.
Zurück zum Zitat Mata A., A.J. Fleischman, S. Roy. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomedical Microdevices 2005;7(4):281–293.CrossRef Mata A., A.J. Fleischman, S. Roy. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomedical Microdevices 2005;7(4):281–293.CrossRef
227.
Zurück zum Zitat Lee J.N., X. Jiang, D. Ryan, G.M. Whitesides. Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane). Langmuir 2004;20(26):11684–11691.CrossRef Lee J.N., X. Jiang, D. Ryan, G.M. Whitesides. Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane). Langmuir 2004;20(26):11684–11691.CrossRef
228.
Zurück zum Zitat Millet L.J., M.E. Stewart, J.V. Sweedler, R.G. Nuzzo, M.U. Gillette. Microfluidic devices for culturing primary mammalian neurons at low densities. Lab on a Chip 2007;7(8):987–994.CrossRef Millet L.J., M.E. Stewart, J.V. Sweedler, R.G. Nuzzo, M.U. Gillette. Microfluidic devices for culturing primary mammalian neurons at low densities. Lab on a Chip 2007;7(8):987–994.CrossRef
229.
Zurück zum Zitat Kim L., Y.C. Toh, J. Voldman, H. Yu. A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab on a Chip 2007;7(6):681–694.CrossRef Kim L., Y.C. Toh, J. Voldman, H. Yu. A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab on a Chip 2007;7(6):681–694.CrossRef
230.
Zurück zum Zitat Kasemo B. Biological surface science. Surface Science 2002;500(1–3):656–677.CrossRef Kasemo B. Biological surface science. Surface Science 2002;500(1–3):656–677.CrossRef
231.
Zurück zum Zitat Makamba H., J.H. Kim, K. Lim, N. Park, J.H. Hahn. Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis 2003;24(21):3607–3619.CrossRef Makamba H., J.H. Kim, K. Lim, N. Park, J.H. Hahn. Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis 2003;24(21):3607–3619.CrossRef
232.
Zurück zum Zitat Fritz J.L., M.J. Owen. Hydrophobic Recovery of Plasma-Treated Polydimethylsiloxane. The Journal of Adhesion 1995;54(1):33–45.CrossRef Fritz J.L., M.J. Owen. Hydrophobic Recovery of Plasma-Treated Polydimethylsiloxane. The Journal of Adhesion 1995;54(1):33–45.CrossRef
233.
Zurück zum Zitat Hu S., X. Ren, M. Bachman, C.E. Sims, G.P. Li, N. Allbritton. Surface Modification of Poly(dimethylsiloxane) Microfluidic Devices by Ultraviolet Polymer Grafting. Analytical Chemistry 2002;74(16):4117–4123.CrossRef Hu S., X. Ren, M. Bachman, C.E. Sims, G.P. Li, N. Allbritton. Surface Modification of Poly(dimethylsiloxane) Microfluidic Devices by Ultraviolet Polymer Grafting. Analytical Chemistry 2002;74(16):4117–4123.CrossRef
234.
Zurück zum Zitat Slentz B.E., N.A. Penner, F.E. Regnier. Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization. Journal of Chromatography A 2002;948(1–2):225–233.CrossRef Slentz B.E., N.A. Penner, F.E. Regnier. Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization. Journal of Chromatography A 2002;948(1–2):225–233.CrossRef
235.
Zurück zum Zitat Ocvirk G., M. Munroe, T. Tang, R. Oleschuk, K. Westra, D.J. Harrison. Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices. Electrophoresis 2000;21(1):107–115.CrossRef Ocvirk G., M. Munroe, T. Tang, R. Oleschuk, K. Westra, D.J. Harrison. Electrokinetic control of fluid flow in native poly(dimethylsiloxane) capillary electrophoresis devices. Electrophoresis 2000;21(1):107–115.CrossRef
236.
Zurück zum Zitat Dou Y.H., N. Bao, J.J. Xu, H.Y. Chen. A dynamically modified microfluidic poly(dimethylsiloxane) chip with electrochemical detection for biological analysis. Electrophoresis 2002;23(20):3558–3566.CrossRef Dou Y.H., N. Bao, J.J. Xu, H.Y. Chen. A dynamically modified microfluidic poly(dimethylsiloxane) chip with electrochemical detection for biological analysis. Electrophoresis 2002;23(20):3558–3566.CrossRef
237.
Zurück zum Zitat Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 1997;277(5330):1232–1237.CrossRef Decher G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 1997;277(5330):1232–1237.CrossRef
238.
Zurück zum Zitat Sung W.C., C.C. Chang, H. Makamba, S.H. Chen. Long-term affinity modification on poly(dimethylsiloxane) substrate and its application for ELISA analysis. Analytical Chemistry 2008;80(5):1529–1535.CrossRef Sung W.C., C.C. Chang, H. Makamba, S.H. Chen. Long-term affinity modification on poly(dimethylsiloxane) substrate and its application for ELISA analysis. Analytical Chemistry 2008;80(5):1529–1535.CrossRef
239.
Zurück zum Zitat Hanein Y., Y.V. Pan, B.D. Ratner, D.D. Denton, K.F. Bohringer. Micromachining of non-fouling coatings for bio-MEMS applications. Sensors and Actuators B-Chemical 2001;81(1):49–54.CrossRef Hanein Y., Y.V. Pan, B.D. Ratner, D.D. Denton, K.F. Bohringer. Micromachining of non-fouling coatings for bio-MEMS applications. Sensors and Actuators B-Chemical 2001;81(1):49–54.CrossRef
240.
Zurück zum Zitat Lopez G.P., B.D. Ratner, C.D. Tidwell, C.L. Haycox, R.J. Rapoza, T.A. Horbett. Glow-Discharge Plasma Deposition of Tetraethylene Glycol Dimethyl Ether for Fouling-resistant Biomaterial Surfaces. Journal of Biomedical Materials Research 1992;26(4):415–439.CrossRef Lopez G.P., B.D. Ratner, C.D. Tidwell, C.L. Haycox, R.J. Rapoza, T.A. Horbett. Glow-Discharge Plasma Deposition of Tetraethylene Glycol Dimethyl Ether for Fouling-resistant Biomaterial Surfaces. Journal of Biomedical Materials Research 1992;26(4):415–439.CrossRef
241.
Zurück zum Zitat Dhayal M., J.S. Choi, C.H. So. Biological fluid interaction with controlled surface properties of organic micro-fluidic devices. Vacuum 2006;80(8):876–879.CrossRef Dhayal M., J.S. Choi, C.H. So. Biological fluid interaction with controlled surface properties of organic micro-fluidic devices. Vacuum 2006;80(8):876–879.CrossRef
242.
Zurück zum Zitat Bajaj P., D. Akin, A. Gupta, D. Sherman, B. Shi, O. Auciello, R. Bashir. Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications. Biomedical Microdevices 2007;9(6):787–794.CrossRef Bajaj P., D. Akin, A. Gupta, D. Sherman, B. Shi, O. Auciello, R. Bashir. Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications. Biomedical Microdevices 2007;9(6):787–794.CrossRef
243.
Zurück zum Zitat Hoivik N.D., J.W. Elam, R.J. Linderman, V.M. Bright, S.M. George, Y.C. Lee. Atomic layer deposited protective coatings for micro-electromechanical systems. Sensors and Actuators a-Physical 2003;103(1–2):100–108.CrossRef Hoivik N.D., J.W. Elam, R.J. Linderman, V.M. Bright, S.M. George, Y.C. Lee. Atomic layer deposited protective coatings for micro-electromechanical systems. Sensors and Actuators a-Physical 2003;103(1–2):100–108.CrossRef
244.
Zurück zum Zitat Wang Y.L., J.H. Pai, H.H. Lai, C.E. Sims, M. Bachman, G.P. Li, N.L. Allbritton. Surface graft polymerization of SU-8 for bio-MEMS applications. Journal of Micromechanics and Microengineering 2007;17(7):1371–1380.CrossRef Wang Y.L., J.H. Pai, H.H. Lai, C.E. Sims, M. Bachman, G.P. Li, N.L. Allbritton. Surface graft polymerization of SU-8 for bio-MEMS applications. Journal of Micromechanics and Microengineering 2007;17(7):1371–1380.CrossRef
245.
Zurück zum Zitat Wang Y.L., M. Bachman, C.E. Sims, G.P. Li, N.L. Allbritton. Simple photografting method to chemically modify and micropattern the surface of SU-8 photoresist. Langmuir 2006;22(6):2719–2725.CrossRef Wang Y.L., M. Bachman, C.E. Sims, G.P. Li, N.L. Allbritton. Simple photografting method to chemically modify and micropattern the surface of SU-8 photoresist. Langmuir 2006;22(6):2719–2725.CrossRef
246.
Zurück zum Zitat Nordstrom M., R. Marie, M. Calleja, A. Boisen. Rendering SU-8 hydrophilic to facilitate use in micro channel fabrication. Journal of Micromechanics and Microengineering 2004;14(12):1614–1617.CrossRef Nordstrom M., R. Marie, M. Calleja, A. Boisen. Rendering SU-8 hydrophilic to facilitate use in micro channel fabrication. Journal of Micromechanics and Microengineering 2004;14(12):1614–1617.CrossRef
247.
Zurück zum Zitat Joshi M., N. Kale, R. Lal, V.R. Rao, S. Mukherji. A novel dry method for surface modification of SU-8 for immobilization of biomolecules in Bio-MEMS. Biosensors & Bioelectronics 2007;22(11):2429–2435.CrossRef Joshi M., N. Kale, R. Lal, V.R. Rao, S. Mukherji. A novel dry method for surface modification of SU-8 for immobilization of biomolecules in Bio-MEMS. Biosensors & Bioelectronics 2007;22(11):2429–2435.CrossRef
248.
Zurück zum Zitat Chen C.S., M. Mrksich, S. Huang, G.M. Whitesides, D.E. Ingber. Micropatterned surfaces for control of cell shape, position, and function. Biotechnology Progress 1998;14(3):356–363.CrossRef Chen C.S., M. Mrksich, S. Huang, G.M. Whitesides, D.E. Ingber. Micropatterned surfaces for control of cell shape, position, and function. Biotechnology Progress 1998;14(3):356–363.CrossRef
249.
Zurück zum Zitat Duncan A.C., F. Weisbuch, F. Rouais, S. Lazare, C. Baquey. Laser microfabricated model surfaces for controlled cell growth. Biosensors & Bioelectronics 2002;17(5):413–426.CrossRef Duncan A.C., F. Weisbuch, F. Rouais, S. Lazare, C. Baquey. Laser microfabricated model surfaces for controlled cell growth. Biosensors & Bioelectronics 2002;17(5):413–426.CrossRef
250.
Zurück zum Zitat Duncan A.C., F. Rouais, S. Lazare, L. Bordenave, C. Baquey. Effect of laser modified surface microtopochemistry on endothelial cell growth. Colloids and Surfaces B-Biointerfaces 2007;54(2):150–159.CrossRef Duncan A.C., F. Rouais, S. Lazare, L. Bordenave, C. Baquey. Effect of laser modified surface microtopochemistry on endothelial cell growth. Colloids and Surfaces B-Biointerfaces 2007;54(2):150–159.CrossRef
251.
Zurück zum Zitat Edell D.J., V.V. Toi, V.M. McNeil, L.D. Clark. Factors influencing the biocompatibility of insertable silicon microshafts in cerebral-cortex. Ieee Transactions on Biomedical Engineering 1992;39(6):635–643.CrossRef Edell D.J., V.V. Toi, V.M. McNeil, L.D. Clark. Factors influencing the biocompatibility of insertable silicon microshafts in cerebral-cortex. Ieee Transactions on Biomedical Engineering 1992;39(6):635–643.CrossRef
252.
Zurück zum Zitat Hoogerwerf A.C., K.D. Wise. A 3-dimensional microelectrode array for chronic neural recording. Ieee Transactions on Biomedical Engineering 1994;41(12):1136–1146.CrossRef Hoogerwerf A.C., K.D. Wise. A 3-dimensional microelectrode array for chronic neural recording. Ieee Transactions on Biomedical Engineering 1994;41(12):1136–1146.CrossRef
253.
Zurück zum Zitat Schmidt S., K. Horch, R. Normann. Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue. Journal of Biomedical Materials Research 1993;27(11):1393–1399.CrossRef Schmidt S., K. Horch, R. Normann. Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue. Journal of Biomedical Materials Research 1993;27(11):1393–1399.CrossRef
Metadaten
Titel
Packaging for Bio-micro-electro-mechanical Systems (BioMEMS) and Microfluidic Chips
verfasst von
Edward S. Park
Jan Krajniak
Hang Lu
Copyright-Jahr
2010
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-0040-1_15

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.