Skip to main content
Erschienen in: Energy Systems 2/2020

19.11.2018 | Original Paper

Performance analysis method for cogeneration system with multiple energy supplies

verfasst von: Yanan Wang, Jiekang Wu, Xiaoming Mao

Erschienen in: Energy Systems | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Compressed air storage technology plays an important role in the utilization of renewable energy sources and has received extensive attention in recent years. This paper proposes a cogeneration system with multiple energy supplies to generate electricity, heat energy and domestic hot water. Compressed air energy storage equipment is used to stabilize the wind generator output power, and the air compression process is used to heat domestic water and the air release process is used to assist the gas turbine generating electricity. The stability and efficiency of the multi-energy cogeneration system can be improved by simulating and analyzing the influencing factors and setting the equipment parameters reasonably.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Parida, A., Chatterjee, D.: Cogeneration topology for wind energy conversion system using doubly-fed induction generator. IET Power Electron. 9(7), 1406–1415 (2016)CrossRef Parida, A., Chatterjee, D.: Cogeneration topology for wind energy conversion system using doubly-fed induction generator. IET Power Electron. 9(7), 1406–1415 (2016)CrossRef
2.
Zurück zum Zitat Furong, L.: Market reforms for integrated local energy systems. Proc. CSEE. 35(14), 3693–3698 (2015) Furong, L.: Market reforms for integrated local energy systems. Proc. CSEE. 35(14), 3693–3698 (2015)
3.
Zurück zum Zitat Xiaoming, X., Sioshansi, R., Marano, V.: A stochastic dynamic programming model for co-optimization of distributed energy storage. Energy Syst. 5(3), 475–505 (2014)CrossRef Xiaoming, X., Sioshansi, R., Marano, V.: A stochastic dynamic programming model for co-optimization of distributed energy storage. Energy Syst. 5(3), 475–505 (2014)CrossRef
4.
Zurück zum Zitat Belabbas, B., Allaoui, T., Tadjine, M., Denai, M.: Power management and control strategies for off-grid hybrid power systems with renewable energies and storage. Energy Syst. 2, 1–30 (2017) Belabbas, B., Allaoui, T., Tadjine, M., Denai, M.: Power management and control strategies for off-grid hybrid power systems with renewable energies and storage. Energy Syst. 2, 1–30 (2017)
5.
Zurück zum Zitat Arora, R., Kaushik, S.C., Kumar, R., Arora, R.: Multi-objective thermo-economic optimization of solar parabolic dish Stirling heat engine with regenerative losses using NSGA-II and decision making. Appl. Solar Energy 52, 295–304 (2016)CrossRef Arora, R., Kaushik, S.C., Kumar, R., Arora, R.: Multi-objective thermo-economic optimization of solar parabolic dish Stirling heat engine with regenerative losses using NSGA-II and decision making. Appl. Solar Energy 52, 295–304 (2016)CrossRef
6.
Zurück zum Zitat Ghalelou, A.N., Fakhri, A.P., Nojavan, S., Majidi, M., Hatami, H.: A stochastic self-scheduling program for compressed air energy storage (CAES) of renewable energy sources (RESs) based on a demand response mechanism. Energy Convers. Manag. 120, 388–396 (2016)CrossRef Ghalelou, A.N., Fakhri, A.P., Nojavan, S., Majidi, M., Hatami, H.: A stochastic self-scheduling program for compressed air energy storage (CAES) of renewable energy sources (RESs) based on a demand response mechanism. Energy Convers. Manag. 120, 388–396 (2016)CrossRef
7.
Zurück zum Zitat Cheng, Y., Xusheng, W., Manman, H., Su, D., Xiaoqian, M.: Design and simulation of gas turbine-based CCHP combined with solar and compressed air energy storage in a hotel building. Energy Build. 153(15), 412–420 (2017) Cheng, Y., Xusheng, W., Manman, H., Su, D., Xiaoqian, M.: Design and simulation of gas turbine-based CCHP combined with solar and compressed air energy storage in a hotel building. Energy Build. 153(15), 412–420 (2017)
8.
Zurück zum Zitat Park, H., Baldick, R.: Integration of compressed air energy storage systems co-located with wind resources in the ERCOT transmission system. Int. J. Electr. Power Energy Syst. 90, 181–189 (2017)CrossRef Park, H., Baldick, R.: Integration of compressed air energy storage systems co-located with wind resources in the ERCOT transmission system. Int. J. Electr. Power Energy Syst. 90, 181–189 (2017)CrossRef
9.
Zurück zum Zitat Fathabadi, H.: Novel high-efficient large-scale stand-alone solar/wind hybrid power source equipped with battery bank used as storage device. J. Energy Storage 17, 485–495 (2018)CrossRef Fathabadi, H.: Novel high-efficient large-scale stand-alone solar/wind hybrid power source equipped with battery bank used as storage device. J. Energy Storage 17, 485–495 (2018)CrossRef
10.
Zurück zum Zitat Al-Nimr, M.A., KiWan, S.M., Talafha, S.: Hybrid solar-wind water distillation system. Desalination 295, 33–40 (2016)CrossRef Al-Nimr, M.A., KiWan, S.M., Talafha, S.: Hybrid solar-wind water distillation system. Desalination 295, 33–40 (2016)CrossRef
11.
Zurück zum Zitat Saadat, M., Shirazi, F.A., Li, P.Y.: Modeling and control of an open accumulator compressed air energy storage (CAES) system for wind turbines. Appl. Energy 137, 603–616 (2015)CrossRef Saadat, M., Shirazi, F.A., Li, P.Y.: Modeling and control of an open accumulator compressed air energy storage (CAES) system for wind turbines. Appl. Energy 137, 603–616 (2015)CrossRef
12.
Zurück zum Zitat Nomnqa, M., Ikhu-Omoregbe, D., Rabiu, A.: Performance evaluation of a HT-PEM fuel cell micro-cogeneration system for domestic application. Energy Syst. 8, 1–26 (2017)CrossRef Nomnqa, M., Ikhu-Omoregbe, D., Rabiu, A.: Performance evaluation of a HT-PEM fuel cell micro-cogeneration system for domestic application. Energy Syst. 8, 1–26 (2017)CrossRef
13.
Zurück zum Zitat Bagdanavicius, A., Jenkins, N.: Exergy and exergoeconomic analysis of a compressed air energy storage combined with a district energy system. Energy Convers. Manag. 77(1), 432–440 (2014)CrossRef Bagdanavicius, A., Jenkins, N.: Exergy and exergoeconomic analysis of a compressed air energy storage combined with a district energy system. Energy Convers. Manag. 77(1), 432–440 (2014)CrossRef
14.
Zurück zum Zitat Alami, A.H.: Experimental assessment of compressed air energy storage (CAES) system and buoyancy work energy storage (BWES) as cellular wind energy storage options. J. Energy Storage 1(1), 38–43 (2015)CrossRef Alami, A.H.: Experimental assessment of compressed air energy storage (CAES) system and buoyancy work energy storage (BWES) as cellular wind energy storage options. J. Energy Storage 1(1), 38–43 (2015)CrossRef
15.
Zurück zum Zitat Junlian, Y., Dezhong, W., Yu-Teak, K., Young-Ho, L.: A hybrid energy storage system using pump compressed air and micro-hydro turbine. Renew. Energy 65(5), 117–122 (2014) Junlian, Y., Dezhong, W., Yu-Teak, K., Young-Ho, L.: A hybrid energy storage system using pump compressed air and micro-hydro turbine. Renew. Energy 65(5), 117–122 (2014)
16.
Zurück zum Zitat Nease, J., Thomas, A.: Coal-fuelled systems for peaking power with 100% CO2, capture through integration of solid oxide fuel cells with compressed air energy storage. J. Power Sour. 251(2), 92–107 (2014)CrossRef Nease, J., Thomas, A.: Coal-fuelled systems for peaking power with 100% CO2, capture through integration of solid oxide fuel cells with compressed air energy storage. J. Power Sour. 251(2), 92–107 (2014)CrossRef
17.
Zurück zum Zitat Caichun, C., Yu, Z., Shuwei, Z., Pingyang, Z., Fei, W.: A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns. Renew. Energy 74, 718–726 (2015)CrossRef Caichun, C., Yu, Z., Shuwei, Z., Pingyang, Z., Fei, W.: A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns. Renew. Energy 74, 718–726 (2015)CrossRef
18.
Zurück zum Zitat Hao, P., Yu, Y., Rui, L., Xiang, L.: Thermodynamic analysis of an improved adiabatic compressed air energy storage system. Appl. Energy 183, 1361–1373 (2016)CrossRef Hao, P., Yu, Y., Rui, L., Xiang, L.: Thermodynamic analysis of an improved adiabatic compressed air energy storage system. Appl. Energy 183, 1361–1373 (2016)CrossRef
19.
Zurück zum Zitat Mohammadi, A., Mehrpooya, M.: Exergy analysis and optimization of an integrated micro gas turbine, compressed air energy storage and solar dish collector process. J. Clean. Prod. 139, 372–383 (2016)CrossRef Mohammadi, A., Mehrpooya, M.: Exergy analysis and optimization of an integrated micro gas turbine, compressed air energy storage and solar dish collector process. J. Clean. Prod. 139, 372–383 (2016)CrossRef
20.
Zurück zum Zitat Erren, Y., Huanran, W., Ligang, W., Guang, X., Marechal, F.: Multi-objective optimization and exergoeconomic analysis of a combined cooling, heating and power based compressed air energy storage system. Energy Convers. Manag. 138, 199–209 (2017)CrossRef Erren, Y., Huanran, W., Ligang, W., Guang, X., Marechal, F.: Multi-objective optimization and exergoeconomic analysis of a combined cooling, heating and power based compressed air energy storage system. Energy Convers. Manag. 138, 199–209 (2017)CrossRef
21.
Zurück zum Zitat Mohammadi, A., Ahmadi, M.H., Bidi, M., Joda, F., Valero, A., Uson, S.: Exergy analysis of a combined cooling, heating and power system integrated with wind turbine and compressed air energy storage system. Energy Convers. Manag. 131, 69–78 (2017)CrossRef Mohammadi, A., Ahmadi, M.H., Bidi, M., Joda, F., Valero, A., Uson, S.: Exergy analysis of a combined cooling, heating and power system integrated with wind turbine and compressed air energy storage system. Energy Convers. Manag. 131, 69–78 (2017)CrossRef
22.
Zurück zum Zitat Ke, Y., Yuan, Z., Xuemei, L., Jianzhong, X.: Theoretical evaluation on the impact of heat exchanger in advanced adiabatic compressed air energy storage system. Energy Convers. Manag. 86, 1031–1044 (2014)CrossRef Ke, Y., Yuan, Z., Xuemei, L., Jianzhong, X.: Theoretical evaluation on the impact of heat exchanger in advanced adiabatic compressed air energy storage system. Energy Convers. Manag. 86, 1031–1044 (2014)CrossRef
Metadaten
Titel
Performance analysis method for cogeneration system with multiple energy supplies
verfasst von
Yanan Wang
Jiekang Wu
Xiaoming Mao
Publikationsdatum
19.11.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Energy Systems / Ausgabe 2/2020
Print ISSN: 1868-3967
Elektronische ISSN: 1868-3975
DOI
https://doi.org/10.1007/s12667-018-0315-7

Weitere Artikel der Ausgabe 2/2020

Energy Systems 2/2020 Zur Ausgabe