Skip to main content
Erschienen in: Journal of Computational Electronics 3/2018

09.05.2018

Performance analysis of all-optical full-adder based on two-dimensional photonic crystals

verfasst von: Sandip Swarnakar, Santosh Kumar, Sandeep Sharma

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An all-optical full-adder device is implemented using a two-dimensional photonic crystal waveguide. The design of the full-adder circuit is based on a beam-interference principle that utilizes a combination of Y- and T-shaped waveguide structures formed from silicon dielectric rods in air background. Available optical full-adder circuits are designed with either a semiconductor optical amplifier (SOA) or a nonlinear material. The proposed circuit has been implemented without using any nonlinear material and SOA to overcome previous limitations. Various combinations of inputs of the full-adder are used and optimized through multiple simulations. The difference in the output between logic “0” and “1” has been optimized to reduce the error probability in their identification. The simulated outputs are also verified with the help of the electric field intensity distribution at wavelengths near 1550 nm for different input combinations of the full-adder. Moreover, the proposed full-adder structure has very fast response time of 1.06 ps.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (1995)MATH Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (1995)MATH
2.
Zurück zum Zitat Noda, S., Baba, T.: Roadmap on Photonic Crystal. Kluwer Academic Publishers, Dordrecht (2003)CrossRef Noda, S., Baba, T.: Roadmap on Photonic Crystal. Kluwer Academic Publishers, Dordrecht (2003)CrossRef
3.
Zurück zum Zitat Danaie, M., Kaatuzian, H.: Improvement of power coupling in a nonlinear photonic crystal directional coupler switch. Photonics Nanostruct. Fundam. Appl. 9, 70–81 (2011)CrossRef Danaie, M., Kaatuzian, H.: Improvement of power coupling in a nonlinear photonic crystal directional coupler switch. Photonics Nanostruct. Fundam. Appl. 9, 70–81 (2011)CrossRef
4.
Zurück zum Zitat Danaie, M., Kaatuzian, H.: Design of a photonic crystal differential phase comparator for a Mach–Zehnder switch. J. Opt. 13, 1–7 (2011)CrossRef Danaie, M., Kaatuzian, H.: Design of a photonic crystal differential phase comparator for a Mach–Zehnder switch. J. Opt. 13, 1–7 (2011)CrossRef
5.
Zurück zum Zitat Danaie, M., Kaatuzian, H.: Bandwidth improvement for a photonic crystal optical Y-splitter. J. Opt. Soc. Korea 15(3), 283–288 (2011)CrossRef Danaie, M., Kaatuzian, H.: Bandwidth improvement for a photonic crystal optical Y-splitter. J. Opt. Soc. Korea 15(3), 283–288 (2011)CrossRef
6.
Zurück zum Zitat Shinya, A., Takara, H., Kawanishi, S.: All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab. Opt. Express 14(3), 1230–1235 (2006)CrossRef Shinya, A., Takara, H., Kawanishi, S.: All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab. Opt. Express 14(3), 1230–1235 (2006)CrossRef
7.
Zurück zum Zitat Geshiro, T.M., Kitamura, T., Nishida, K., Sawa, S.: All-optical logic gates containing a two-mode nonlinear waveguide. IEEE J. Quantum Electron. 38(4), 37–46 (2002) Geshiro, T.M., Kitamura, T., Nishida, K., Sawa, S.: All-optical logic gates containing a two-mode nonlinear waveguide. IEEE J. Quantum Electron. 38(4), 37–46 (2002)
8.
Zurück zum Zitat Andalib, P., Granpayeh, N.: All-optical ultra-compact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 26(1), 10–16 (2009)CrossRef Andalib, P., Granpayeh, N.: All-optical ultra-compact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 26(1), 10–16 (2009)CrossRef
9.
Zurück zum Zitat Soto, F.C., et al.: All-optical switching structure based on a photonic crystal directional coupler. Opt. Express 12(1), 161–167 (2004)CrossRef Soto, F.C., et al.: All-optical switching structure based on a photonic crystal directional coupler. Opt. Express 12(1), 161–167 (2004)CrossRef
10.
Zurück zum Zitat Johnson, S.G., Villeneuve, P.R., Fan, S., Joannopoulos, J.D.: Linear waveguides in photonic-crystal slabs. Phys. Rev. B 62, 8212–8222 (2000)CrossRef Johnson, S.G., Villeneuve, P.R., Fan, S., Joannopoulos, J.D.: Linear waveguides in photonic-crystal slabs. Phys. Rev. B 62, 8212–8222 (2000)CrossRef
11.
Zurück zum Zitat Centeno, E., Felbacq, D.: Optical bistability in finite-size nonlinear bi-dimensional photonic crystals doped by a microcavity. Phys. Rev. B Condens. Matter 62, 7683–7686 (2000)CrossRef Centeno, E., Felbacq, D.: Optical bistability in finite-size nonlinear bi-dimensional photonic crystals doped by a microcavity. Phys. Rev. B Condens. Matter 62, 7683–7686 (2000)CrossRef
12.
Zurück zum Zitat Shinya, A., Tanabe, T., Kuramochi, E., Notomi, M.: All-optical switch and digital light processing using photonic crystals. NTT Tech. Rev. 3(12), 61–68 (2005) Shinya, A., Tanabe, T., Kuramochi, E., Notomi, M.: All-optical switch and digital light processing using photonic crystals. NTT Tech. Rev. 3(12), 61–68 (2005)
13.
Zurück zum Zitat Hu, X., et al.: An optical switching in two dimensional \(\text{ Ce:BaTiO }_3\) nonlinear photonic crystal. Opt. Commun. 237(4–6), 371–377 (2004)CrossRef Hu, X., et al.: An optical switching in two dimensional \(\text{ Ce:BaTiO }_3\) nonlinear photonic crystal. Opt. Commun. 237(4–6), 371–377 (2004)CrossRef
14.
Zurück zum Zitat Tanaka, Y., et al.: Optical bistable operations in AlGaAs-based photonic crystal slab microcavity at telecommunication wavelengths. IEEE Photonics Technol. Lett. 18(19), 1996–1998 (2006)CrossRef Tanaka, Y., et al.: Optical bistable operations in AlGaAs-based photonic crystal slab microcavity at telecommunication wavelengths. IEEE Photonics Technol. Lett. 18(19), 1996–1998 (2006)CrossRef
15.
Zurück zum Zitat Belotti, M., et al.: All-optical switching in 2D silicon photonic crystals with low loss waveguides and optical cavities. Opt. Exp. 16(15), 11624–11636 (2008) Belotti, M., et al.: All-optical switching in 2D silicon photonic crystals with low loss waveguides and optical cavities. Opt. Exp. 16(15), 11624–11636 (2008)
16.
Zurück zum Zitat Salmanpoura, A., Nejada, S.Md, Bahramib, Ali: All-optical photonic crystal AND, XOR, and OR logic gates using nonlinear Kerr effect and ring resonators. J. Mod. Opt. 62(9), 693–700 (2015)MathSciNetCrossRef Salmanpoura, A., Nejada, S.Md, Bahramib, Ali: All-optical photonic crystal AND, XOR, and OR logic gates using nonlinear Kerr effect and ring resonators. J. Mod. Opt. 62(9), 693–700 (2015)MathSciNetCrossRef
17.
Zurück zum Zitat Nguyen, H.C., Hashimoto, S., Shinkawa, M., Baba, T.: Compact and fast photonic crystal silicon optical modulators. Opt. Express 20(20), 13000–13007 (2012)CrossRef Nguyen, H.C., Hashimoto, S., Shinkawa, M., Baba, T.: Compact and fast photonic crystal silicon optical modulators. Opt. Express 20(20), 13000–13007 (2012)CrossRef
18.
Zurück zum Zitat Zhu, Z.H., et al.: High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals. Opt. Exp. 14(5), 1783–1788 (2006)CrossRef Zhu, Z.H., et al.: High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals. Opt. Exp. 14(5), 1783–1788 (2006)CrossRef
19.
Zurück zum Zitat Jung, Y.J., et al.: Reconfigurable all-optical logic AND, NAND, OR,NOR, XOR and XNOR gates implemented by photonic crystal nonlinear cavities. In: Conference on Lasers and Electro Optics and the Pacific Rim, OSA (2009) Jung, Y.J., et al.: Reconfigurable all-optical logic AND, NAND, OR,NOR, XOR and XNOR gates implemented by photonic crystal nonlinear cavities. In: Conference on Lasers and Electro Optics and the Pacific Rim, OSA (2009)
20.
Zurück zum Zitat Kosaka, H., et al.: Self-collimating phenomena in photonic crystals. Appl. Phys. Lett. 74(9), 1212–1214 (1999)CrossRef Kosaka, H., et al.: Self-collimating phenomena in photonic crystals. Appl. Phys. Lett. 74(9), 1212–1214 (1999)CrossRef
21.
Zurück zum Zitat Rostami, A., Nazari, F., Banaei, H.A., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct. Fundam. Appl. 8, 14–22 (2010)CrossRef Rostami, A., Nazari, F., Banaei, H.A., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct. Fundam. Appl. 8, 14–22 (2010)CrossRef
22.
Zurück zum Zitat Liu, Q., et al.: All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt. Express 16(23), 18992–19000 (2008)CrossRef Liu, Q., et al.: All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt. Express 16(23), 18992–19000 (2008)CrossRef
23.
Zurück zum Zitat Jiang, Y.C., Liu, S.B., Zhang, H.F., Kong, X.K.: Realization of all-optical half-adder based on self-collimated beams by two-dimensional photonic crystals. Opt. Commun. 348, 90–94 (2015)CrossRef Jiang, Y.C., Liu, S.B., Zhang, H.F., Kong, X.K.: Realization of all-optical half-adder based on self-collimated beams by two-dimensional photonic crystals. Opt. Commun. 348, 90–94 (2015)CrossRef
24.
Zurück zum Zitat Menezes, J.W.M., et al.: All-optical half-adder using all-optical XOR and AND gates for optical generation of “sum" and "carry". Fiber Integr. Opt. 29(4), 254–271 (2010)CrossRef Menezes, J.W.M., et al.: All-optical half-adder using all-optical XOR and AND gates for optical generation of “sum" and "carry". Fiber Integr. Opt. 29(4), 254–271 (2010)CrossRef
25.
Zurück zum Zitat Shaik, E.H., Rangaswamy, N.: Improved design of all-optical photonic crystal logic gates using T-shaped waveguide. Opt. Quantum Electron. 63(10), 11082-015 (2016) Shaik, E.H., Rangaswamy, N.: Improved design of all-optical photonic crystal logic gates using T-shaped waveguide. Opt. Quantum Electron. 63(10), 11082-015 (2016)
26.
Zurück zum Zitat Karkhanehchi, M., Parandin, F., Zahedi, A.: Design of an all optical half-adder based on 2D photonic crystals. Photonic Netw. Commun. 33(2), 159–165 (2017)CrossRef Karkhanehchi, M., Parandin, F., Zahedi, A.: Design of an all optical half-adder based on 2D photonic crystals. Photonic Netw. Commun. 33(2), 159–165 (2017)CrossRef
27.
Zurück zum Zitat Alipour-Banaei, H., Seif-Dargahi, H.: Photonic crystal based 1-bit full-adder optical circuit by using ring resonators in a nonlinear structure. Photonics Nanostruct. Fundam. Appl. 24, 29–34 (2017)CrossRef Alipour-Banaei, H., Seif-Dargahi, H.: Photonic crystal based 1-bit full-adder optical circuit by using ring resonators in a nonlinear structure. Photonics Nanostruct. Fundam. Appl. 24, 29–34 (2017)CrossRef
28.
Zurück zum Zitat Kumar, S., Singh, L., Raghuwanshi, S.K., Chen, N.K.: Design of full-adder and full-subtractor using metal-insulator-metal plasmonic waveguides. Plasmonics 11, 1–11 (2016)CrossRef Kumar, S., Singh, L., Raghuwanshi, S.K., Chen, N.K.: Design of full-adder and full-subtractor using metal-insulator-metal plasmonic waveguides. Plasmonics 11, 1–11 (2016)CrossRef
29.
Zurück zum Zitat Kumar, A., Kumar, S., Raghuwanshi, S.K.: Implementation of full-adder and full-subtractor based on electro-optic effect in Mach–Zehnder interferometers. Opt. Commun. 324, 93–107 (2014)CrossRef Kumar, A., Kumar, S., Raghuwanshi, S.K.: Implementation of full-adder and full-subtractor based on electro-optic effect in Mach–Zehnder interferometers. Opt. Commun. 324, 93–107 (2014)CrossRef
30.
Zurück zum Zitat Kumar, S.: Reversible full-adder using lithium-niobate based Peres gate. In: International Conference on Fiber Optics and Photonics, OSA, pp. 1–3 (2016) Kumar, S.: Reversible full-adder using lithium-niobate based Peres gate. In: International Conference on Fiber Optics and Photonics, OSA, pp. 1–3 (2016)
31.
Zurück zum Zitat Esmaeili, S.A., Cherri, A.K.: Photonic crystal-based all-optical arithmetic circuits without SOA-based switches. Optik 125, 3710–3713 (2014)CrossRef Esmaeili, S.A., Cherri, A.K.: Photonic crystal-based all-optical arithmetic circuits without SOA-based switches. Optik 125, 3710–3713 (2014)CrossRef
32.
Zurück zum Zitat Huang, Z., Yuan, S., Wang, Y., Huang, Q., Xia, J.: Tailoring the structure of multilayered hybrid silicon vertical waveguide to achieve anomalous dispersion. IEEE Photonics J. 9(3), 1–9 (2017) Huang, Z., Yuan, S., Wang, Y., Huang, Q., Xia, J.: Tailoring the structure of multilayered hybrid silicon vertical waveguide to achieve anomalous dispersion. IEEE Photonics J. 9(3), 1–9 (2017)
33.
Zurück zum Zitat Turner, A.C., et al.: Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Exp. 14(10), 4357–4362 (2006)CrossRef Turner, A.C., et al.: Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Exp. 14(10), 4357–4362 (2006)CrossRef
34.
Zurück zum Zitat Xavier, S.C., Arunachalam, K., Caroline, E., Johnson, W.: Design of two-dimensional photonic crystal-based all-optical binary adder. Opt. Eng. 52, 1–6 (2013)CrossRef Xavier, S.C., Arunachalam, K., Caroline, E., Johnson, W.: Design of two-dimensional photonic crystal-based all-optical binary adder. Opt. Eng. 52, 1–6 (2013)CrossRef
35.
Zurück zum Zitat Tang, C., et al.: Design of all-optical logic gates avoiding external phase shifters in a two-dimensional photonic crystal based on multi-mode interference for BPSK signals. Opt. Commun. 316, 49–55 (2014)CrossRef Tang, C., et al.: Design of all-optical logic gates avoiding external phase shifters in a two-dimensional photonic crystal based on multi-mode interference for BPSK signals. Opt. Commun. 316, 49–55 (2014)CrossRef
36.
Zurück zum Zitat D’souza, N.M., Mathew, V.: Interference based square lattice photonic crystal logic gates working with different wavelengths. Opt. Laser Technol. 80, 214–219 (2016)CrossRef D’souza, N.M., Mathew, V.: Interference based square lattice photonic crystal logic gates working with different wavelengths. Opt. Laser Technol. 80, 214–219 (2016)CrossRef
37.
Zurück zum Zitat Shaik, E.H., Rangaswamy, N.: Multi-mode interference-based photonic crystal logic gates with simple structure and improved contrast ratio. Photonic Netw. Commun. 34, 140–148 (2017)CrossRef Shaik, E.H., Rangaswamy, N.: Multi-mode interference-based photonic crystal logic gates with simple structure and improved contrast ratio. Photonic Netw. Commun. 34, 140–148 (2017)CrossRef
Metadaten
Titel
Performance analysis of all-optical full-adder based on two-dimensional photonic crystals
verfasst von
Sandip Swarnakar
Santosh Kumar
Sandeep Sharma
Publikationsdatum
09.05.2018
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2018
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1177-x

Weitere Artikel der Ausgabe 3/2018

Journal of Computational Electronics 3/2018 Zur Ausgabe

Neuer Inhalt