Skip to main content
Erschienen in: Wireless Networks 7/2020

21.06.2020

Performance analysis of electrically coupled SRR bowtie antenna for wireless broadband communications

verfasst von: P. Dhanaraj, S. Uma Maheswari

Erschienen in: Wireless Networks | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a broadband Bowtie antenna with metamaterial periodical structure for broadband wireless systems and emerging 5G communication frequency band. The modified Bowtie antenna operating from 4 to 6.8 GHz with electrically coupled split-ring resonator (ECSRR) unit cells are proposed and analyzed. In two element Bowtie antenna, the third tuning arms are included to improve matching in the proposed operating frequency band. Four different shaped electrically coupled split-ring resonator (triangle, elliptical, hexagon and pentagon) with negative permeability and negative permittivity metamaterial unit cells are proposed and their reflection properties are analyzed. The triangle shaped ECSRR have the broadband reflection phase property which can be used to enhance the gain of the Bowtie antenna. The 5 \(\times\) 6 periodical ECSRR unit cell embedded with modified Bowtie antenna in FR4 epoxy substrate (\(\epsilon _r\) = 4.4, thickness = 1.6 mm, tan \(\delta\) = 0.025) was designed and fabricated. The presented Bowtie antenna design achieves a wide impedance bandwidth of 50% from 4 to 6.8 GHz (S11 \(\le\) \(-\) 10 dB) and maximum gain of 5.75 dBi. The designed metamaterial periodical structure has the reflection bandwidth of 4–6 GHz within \(-\) 90\({^{\circ }}\) to + 90\({^{\circ }}\) in reflection phase and zero degrees phase reflection at 5.5 GHz. The metamaterial embedded bowtie antenna achieves a maximum gain of 11.08 dBi at 5.5 GHz. By tilting the metamaterial periodical structure, the major lobe direction of the modified Bowtie antenna can also be tilted. The experimental results show that the major lobe of the antenna can be tilted 34\({^{\circ }}\) approximately for 30\({^{\circ }}\) tilting of metamaterial structure with maximum gain of 9.8 dBi.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akyildiz, I. F., Kak, A., Khorov, E., Krasilov, A., & Kureev, A. (2018). ARBAT: A flexible network architecture for QoE-aware communications in 5G systems. Comuputer Networks, 147, 262–279.CrossRef Akyildiz, I. F., Kak, A., Khorov, E., Krasilov, A., & Kureev, A. (2018). ARBAT: A flexible network architecture for QoE-aware communications in 5G systems. Comuputer Networks, 147, 262–279.CrossRef
2.
Zurück zum Zitat Andrews, J. G., Buzzi, S., Choi, W., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.CrossRef Andrews, J. G., Buzzi, S., Choi, W., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.CrossRef
3.
Zurück zum Zitat Dayo, Z.A., Cao, Q., Soothar, P. et.al. (2019) A compact coplanar waveguide feed bow-tie slot antenna for WIMAX, C and X band applications. In 2019 IEEE international conference on computational electromagnetics (ICCEM). Dayo, Z.A., Cao, Q., Soothar, P. et.al. (2019) A compact coplanar waveguide feed bow-tie slot antenna for WIMAX, C and X band applications. In 2019 IEEE international conference on computational electromagnetics (ICCEM).
4.
Zurück zum Zitat Li, T., Zhai, H., Wang, X., et al. (2014). Frequency-reconfigurable bow-tie antenna for bluetooth, WiMAX, and WLAN applications. IEEE Antennas and Wireless Propagation Letters, 14, 171–174.CrossRef Li, T., Zhai, H., Wang, X., et al. (2014). Frequency-reconfigurable bow-tie antenna for bluetooth, WiMAX, and WLAN applications. IEEE Antennas and Wireless Propagation Letters, 14, 171–174.CrossRef
5.
Zurück zum Zitat Ming-Tien, W., & Chuang, M.-L. (2014). Multibroadband slotted Bow-Tie monopole antenna. IEEE Antennas and Wireless Propagation Letters, 14, 887–890. Ming-Tien, W., & Chuang, M.-L. (2014). Multibroadband slotted Bow-Tie monopole antenna. IEEE Antennas and Wireless Propagation Letters, 14, 887–890.
6.
Zurück zum Zitat Ahdi Rezaeieh, S., Antoniades, M. A., & Abbosh, A. M. (2017). Miniaturized planar Yagi antenna utilizing capacitively-coupled folded reflector. IEEE Antennas and Wireless Propagation Letters, 16, 1977–1980.CrossRef Ahdi Rezaeieh, S., Antoniades, M. A., & Abbosh, A. M. (2017). Miniaturized planar Yagi antenna utilizing capacitively-coupled folded reflector. IEEE Antennas and Wireless Propagation Letters, 16, 1977–1980.CrossRef
7.
Zurück zum Zitat Liu, H. W., Jiang, H., Guan, X., et al. (2013). Single-feed slotted bowtie antenna for triband applications. IEEE Antennas and Wireless Propagation Letters, 12, 1658–1661.CrossRef Liu, H. W., Jiang, H., Guan, X., et al. (2013). Single-feed slotted bowtie antenna for triband applications. IEEE Antennas and Wireless Propagation Letters, 12, 1658–1661.CrossRef
8.
Zurück zum Zitat Wani, Z., Abegaonkar, M. P., & Koul, S. K. (2017). Gain enhancement of millimeter wave antenna with metamaterial loading. In 2017 International symposium on antennas and propagation. Wani, Z., Abegaonkar, M. P., & Koul, S. K. (2017). Gain enhancement of millimeter wave antenna with metamaterial loading. In 2017 International symposium on antennas and propagation.
9.
Zurück zum Zitat Rafiei, V., Karamzadeh, S., & Saygin, H. (2018). Millimetre-wave high-gain circularly polarised SIW end-fire bow-tie antenna by utilising semi-planar helix unit cell. Electronics Letters, 54(7), 411–412.CrossRef Rafiei, V., Karamzadeh, S., & Saygin, H. (2018). Millimetre-wave high-gain circularly polarised SIW end-fire bow-tie antenna by utilising semi-planar helix unit cell. Electronics Letters, 54(7), 411–412.CrossRef
10.
Zurück zum Zitat Dadgarpour, A., Zarghooni, B., Virdee, B. S., et al. (2015). Millimeter-wave high-gain siw end-fire bow-tie antenna. IEEE Transactions on Antennas and Propagation, 63(5), 2337–2342.CrossRef Dadgarpour, A., Zarghooni, B., Virdee, B. S., et al. (2015). Millimeter-wave high-gain siw end-fire bow-tie antenna. IEEE Transactions on Antennas and Propagation, 63(5), 2337–2342.CrossRef
11.
Zurück zum Zitat Jiang, H., Si, L.-M., Hu, W., & Lv, X. (2019). A symmetrical dual-beam bowtie antenna with gain enhancement using metamaterial for 5G MIMO applications. IEEE Photonics Journal, 11(1), 1–9. Jiang, H., Si, L.-M., Hu, W., & Lv, X. (2019). A symmetrical dual-beam bowtie antenna with gain enhancement using metamaterial for 5G MIMO applications. IEEE Photonics Journal, 11(1), 1–9.
12.
Zurück zum Zitat Dadgarpour, A., Zarghooni, B., Virdee, B. S., & Denidni, T. A. (2014). Beam tilting antenna using integrated metamaterial loading. IEEE Transactions on Antennas and Propagation, 62(5), 2874–2879.CrossRef Dadgarpour, A., Zarghooni, B., Virdee, B. S., & Denidni, T. A. (2014). Beam tilting antenna using integrated metamaterial loading. IEEE Transactions on Antennas and Propagation, 62(5), 2874–2879.CrossRef
13.
Zurück zum Zitat Dadgarpour, A., Zarghooni, B., Virdee, B. S., et al. (2015). Improvement of gain and elevation tilt angle using metamaterial loading for millimeter-wave applications. IEEE Antennas and Wireless Propagation Letters, 15, 418–420.CrossRef Dadgarpour, A., Zarghooni, B., Virdee, B. S., et al. (2015). Improvement of gain and elevation tilt angle using metamaterial loading for millimeter-wave applications. IEEE Antennas and Wireless Propagation Letters, 15, 418–420.CrossRef
14.
Zurück zum Zitat Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075–2084.CrossRef Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47(11), 2075–2084.CrossRef
15.
Zurück zum Zitat Belenguer, A., Borja, A. L., & Boria, V. E. (2013). Balanced dual composite right/left-handed microstrip line with modified complementary split-ring resonators. IEEE Antennas and Wireless Propagation Letters, 12, 880–883.CrossRef Belenguer, A., Borja, A. L., & Boria, V. E. (2013). Balanced dual composite right/left-handed microstrip line with modified complementary split-ring resonators. IEEE Antennas and Wireless Propagation Letters, 12, 880–883.CrossRef
16.
Zurück zum Zitat Falcone, F., Lopetegi, T., Baena, J. D., et al. (2004). Effective negative-\(\epsilon\) stopband microstrip lines based on complementary split ring resonators. IEEE Microwave and Wireless Components Letters, 14(6), 280–282.CrossRef Falcone, F., Lopetegi, T., Baena, J. D., et al. (2004). Effective negative-\(\epsilon\) stopband microstrip lines based on complementary split ring resonators. IEEE Microwave and Wireless Components Letters, 14(6), 280–282.CrossRef
17.
Zurück zum Zitat Lijuan, S., Naqui, J., Mata-Contreras, J., & Martin, F. (2015). Modeling and applications of metamaterial transmission lines loaded with Pairs of coupled complementary split-ring resonators (CSRRs). IEEE Antennas and Wireless Propagation Letters, 15, 154–157. Lijuan, S., Naqui, J., Mata-Contreras, J., & Martin, F. (2015). Modeling and applications of metamaterial transmission lines loaded with Pairs of coupled complementary split-ring resonators (CSRRs). IEEE Antennas and Wireless Propagation Letters, 15, 154–157.
18.
Zurück zum Zitat Duran-Sindreu, M., Velez, A., & Siso, G. (2011). Recent advances in metamaterial transmission lines based on split rings. Proceedings of the IEEE, 99(10), 1701–1710.CrossRef Duran-Sindreu, M., Velez, A., & Siso, G. (2011). Recent advances in metamaterial transmission lines based on split rings. Proceedings of the IEEE, 99(10), 1701–1710.CrossRef
19.
Zurück zum Zitat Horestani, A. K., Shaterian, Z., Naqui, J., et al. (2016). Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas. IEEE Transactions on Antennas and Propagation, 64(9), 3766–3776.MathSciNetCrossRef Horestani, A. K., Shaterian, Z., Naqui, J., et al. (2016). Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas. IEEE Transactions on Antennas and Propagation, 64(9), 3766–3776.MathSciNetCrossRef
20.
Zurück zum Zitat Horestani, A. K., Fumeaux, C., Al-Sarawi, S. F., & Abbott, D. (2012). Split ring resonators with tapered strip width for wider bandwidth and enhanced resonance. IEEE Microwave and Wireless Components Letters, 22(9), 450–452.CrossRef Horestani, A. K., Fumeaux, C., Al-Sarawi, S. F., & Abbott, D. (2012). Split ring resonators with tapered strip width for wider bandwidth and enhanced resonance. IEEE Microwave and Wireless Components Letters, 22(9), 450–452.CrossRef
21.
Zurück zum Zitat Lei, W., Soong, A. C. K., Jianghua, L., Yong, W., et al. (2020). 5G System Design An End to End Perspective (pp. 151–153). Springer. Lei, W., Soong, A. C. K., Jianghua, L., Yong, W., et al. (2020). 5G System Design An End to End Perspective (pp. 151–153). Springer.
22.
Zurück zum Zitat Li, X., Shi, X.-W., Hu, W., et al. (2013). Compact triband ACS-fed monopole antenna employing open-ended slots for wireless communication. IEEE Transaction on Antennas and Propagation, 12, 38839. Li, X., Shi, X.-W., Hu, W., et al. (2013). Compact triband ACS-fed monopole antenna employing open-ended slots for wireless communication. IEEE Transaction on Antennas and Propagation, 12, 38839.
23.
Zurück zum Zitat Gautam Kunwar, A.K., & Kanaujia, B.K. (2015). Inverted L-slot triple-band antenna with defected ground structure for WLAN and WiMAX applications. International Journal of Microwave and Wireless Technologies (In press). Gautam Kunwar, A.K., & Kanaujia, B.K. (2015). Inverted L-slot triple-band antenna with defected ground structure for WLAN and WiMAX applications. International Journal of Microwave and Wireless Technologies (In press).
24.
Zurück zum Zitat Zhai, H., Ma, Z., Han, Y., & Liang, C. (2013). A compact printed antenna for triple-band WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 12, 6569.CrossRef Zhai, H., Ma, Z., Han, Y., & Liang, C. (2013). A compact printed antenna for triple-band WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 12, 6569.CrossRef
25.
Zurück zum Zitat Huang, H., Liu, Y., Zhang, S., & Gong, S. (2015). Multiband metamaterial loaded monopole antenna for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 14, 662–665.CrossRef Huang, H., Liu, Y., Zhang, S., & Gong, S. (2015). Multiband metamaterial loaded monopole antenna for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 14, 662–665.CrossRef
26.
Zurück zum Zitat Kim, I., & Rahmat-Samii, Y. (2015). Electromagnetic band gap-dipole sub-array antennas creating an enhanced tilted beams for future base station. IET Microwaves, Antennas and Propagation, 9(4), 319–327.CrossRef Kim, I., & Rahmat-Samii, Y. (2015). Electromagnetic band gap-dipole sub-array antennas creating an enhanced tilted beams for future base station. IET Microwaves, Antennas and Propagation, 9(4), 319–327.CrossRef
27.
Zurück zum Zitat Dadgarpour, A., Zarghooni, B., Virdee, B. S., et al. (2015). Enhancement of tilted beam in elevation plane for planar end-fire antennas using artificial dielectricmedium. IEEE Transactions on Antennas Propagation, 63(10), 4540–4545.MathSciNetCrossRef Dadgarpour, A., Zarghooni, B., Virdee, B. S., et al. (2015). Enhancement of tilted beam in elevation plane for planar end-fire antennas using artificial dielectricmedium. IEEE Transactions on Antennas Propagation, 63(10), 4540–4545.MathSciNetCrossRef
28.
Zurück zum Zitat Dadgarpour, A., Kishk, A. A., & Denidni, T. A. (2017). Dual band high-gain antenna with beam switching capability. IET Microwave Antennas Propagation, 11(15), 2155–2161.CrossRef Dadgarpour, A., Kishk, A. A., & Denidni, T. A. (2017). Dual band high-gain antenna with beam switching capability. IET Microwave Antennas Propagation, 11(15), 2155–2161.CrossRef
29.
Zurück zum Zitat Dadgarpour, A., Zarghooni, B., Denidni, T. A., et al. (2016). Dual-band radiation tilting end-fire antenna for WLAN applications. IEEE Antennas Wireless Propagation Letters, 15, 1466–1469.CrossRef Dadgarpour, A., Zarghooni, B., Denidni, T. A., et al. (2016). Dual-band radiation tilting end-fire antenna for WLAN applications. IEEE Antennas Wireless Propagation Letters, 15, 1466–1469.CrossRef
30.
Zurück zum Zitat Zheng, W. C., Zhang, L., & Li, Q. X. (2013). Dual-band dual-polarized compact bowtie antenna array for anti-interference MIMO WLAN. IEEE Transactions on Antennas and Propagation, 62(1), 237–246.CrossRef Zheng, W. C., Zhang, L., & Li, Q. X. (2013). Dual-band dual-polarized compact bowtie antenna array for anti-interference MIMO WLAN. IEEE Transactions on Antennas and Propagation, 62(1), 237–246.CrossRef
31.
Zurück zum Zitat Capobianco, A., Pigozzo, F. M., Assalini, A., et al. (2011). A compact MIMO array of planar end-fire antennas for WLAN applications. IEEE Transactions on Antennas and Propagation, 59(9), 3462–3465.CrossRef Capobianco, A., Pigozzo, F. M., Assalini, A., et al. (2011). A compact MIMO array of planar end-fire antennas for WLAN applications. IEEE Transactions on Antennas and Propagation, 59(9), 3462–3465.CrossRef
32.
Zurück zum Zitat Costa, F. C., Fontgalland, G., Assuncao, A. G. D., et al. (2006). A new quasi-Yagi bowtie type integrated antenna. In Proceedings on International Telecommunications Symposium (pp. 468–471). Costa, F. C., Fontgalland, G., Assuncao, A. G. D., et al. (2006). A new quasi-Yagi bowtie type integrated antenna. In Proceedings on International Telecommunications Symposium (pp. 468–471).
33.
Zurück zum Zitat Gesbert, D., Shafi, M., Shiu, D., et al. (2003). From theory to practice: An overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications, 21(3), 281–302.CrossRef Gesbert, D., Shafi, M., Shiu, D., et al. (2003). From theory to practice: An overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications, 21(3), 281–302.CrossRef
34.
Zurück zum Zitat Antoniades, M. A., Mirzaei, H., & Eleftheriades, G. V. (2016). Transmission-line based metamaterials in antenna engineering. In Handbook of antenna technologies (pp. 423–426). Springer. Antoniades, M. A., Mirzaei, H., & Eleftheriades, G. V. (2016). Transmission-line based metamaterials in antenna engineering. In Handbook of antenna technologies (pp. 423–426). Springer.
35.
Zurück zum Zitat Ahdi Rezaeieh, S., Antoniades, M. A., & Abbosh, A. M. (2016). Bandwidth and directivity enhancement of loop antenna by non-periodic distribution of Mu-negative metamaterial unit cells. IEEE Transactions on Antennas and Propagation, 64(8), 3319–3329.MathSciNetCrossRef Ahdi Rezaeieh, S., Antoniades, M. A., & Abbosh, A. M. (2016). Bandwidth and directivity enhancement of loop antenna by non-periodic distribution of Mu-negative metamaterial unit cells. IEEE Transactions on Antennas and Propagation, 64(8), 3319–3329.MathSciNetCrossRef
36.
Zurück zum Zitat Shamonin, M., Shamonina, E., Kalinin, V., et al. (2004). Properties of a metamaterial element: Analytical solutions and numerical simulations for a singly split double ring. Journal of Applied Physics, 95(7), 3778–3784.CrossRef Shamonin, M., Shamonina, E., Kalinin, V., et al. (2004). Properties of a metamaterial element: Analytical solutions and numerical simulations for a singly split double ring. Journal of Applied Physics, 95(7), 3778–3784.CrossRef
37.
Zurück zum Zitat Sauviac, B., Simovski, C. R., & Tretyakov, S. A. (2004). Double split-ring resonators: Analytical modeling and numerical simulations. Electromagnetics, 24, 317–338.CrossRef Sauviac, B., Simovski, C. R., & Tretyakov, S. A. (2004). Double split-ring resonators: Analytical modeling and numerical simulations. Electromagnetics, 24, 317–338.CrossRef
38.
Zurück zum Zitat Aydin, K., Bulu, I., Guven, K., et al. (2005). Investigation of magnetic resonances for different split-ring resonator parameters and designs. New Journal of Physics, 7, 168.CrossRef Aydin, K., Bulu, I., Guven, K., et al. (2005). Investigation of magnetic resonances for different split-ring resonator parameters and designs. New Journal of Physics, 7, 168.CrossRef
39.
Zurück zum Zitat Feresidis, A. P., Goussetis, G., Wang, S., et al. (2005). Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Transactions on Antennas and Propagation, 53(1), 209–215.CrossRef Feresidis, A. P., Goussetis, G., Wang, S., et al. (2005). Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Transactions on Antennas and Propagation, 53(1), 209–215.CrossRef
40.
Zurück zum Zitat Marqués, R., Mesa, F., Martel, J., & Medina, F. (2003). Comparativeanalysis of edge- and broadside-coupled split ring resonators formetamaterial design Theory and experiment. IEEE Transactions on Antennas and Propagation, 51(10), 2572–2581.CrossRef Marqués, R., Mesa, F., Martel, J., & Medina, F. (2003). Comparativeanalysis of edge- and broadside-coupled split ring resonators formetamaterial design Theory and experiment. IEEE Transactions on Antennas and Propagation, 51(10), 2572–2581.CrossRef
41.
Zurück zum Zitat Baena, J. D., Bonache, J., Martin, F., et al. (2005). Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Transactions on Microwave Theory and Techniques, MTT–53, 1451–1461.CrossRef Baena, J. D., Bonache, J., Martin, F., et al. (2005). Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Transactions on Microwave Theory and Techniques, MTT–53, 1451–1461.CrossRef
Metadaten
Titel
Performance analysis of electrically coupled SRR bowtie antenna for wireless broadband communications
verfasst von
P. Dhanaraj
S. Uma Maheswari
Publikationsdatum
21.06.2020
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 7/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02396-y

Weitere Artikel der Ausgabe 7/2020

Wireless Networks 7/2020 Zur Ausgabe

Neuer Inhalt