Skip to main content
Erschienen in: Neural Computing and Applications 2/2023

24.05.2022 | S.I.: 2019 India Intl. Congress on Computational Intelligence

Performance analysis of stirling engine using computational intelligence techniques (ANN & Fuzzy Mamdani Model) and hybrid algorithms (ANN-PSO & ANFIS)

verfasst von: M. G. K. Machesa, L. K. Tartibu, M. O. Okwu

Erschienen in: Neural Computing and Applications | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Stirling engine is considered as one of the most promising alternatives to conventional combustion units due to its versatility and potential to achieve relatively high efficiency. The output power and torque are the main performance indicators that depend on many variables. Many studies have pointed out that the relationship between the performance indicators of the Stirling engine and its input variables was nonlinear. This study analyses the prediction performance of power and torque in a Stirling engine system using soft computing techniques—artificial neural network (ANN) and Fuzzy Mamdani Model (FMM) and hybrid algorithms—adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network trained with particle swarm optimization (ANN-PSO). The performance of these approaches has been discussed using a dataset from a test conducted on an existing Stirling engine. The performance indicators of the different models considering the power and the torque were predicted and analysed. A parametric analysis has been performed for the ANN-PSO model to identify the best model configuration considering the number of neurons in hidden layers, the number of swarm size and acceleration factors. A detailed description of the process leading to the identification of the best networks architecture for the power and torque model has been provided. The comparison of the four approaches indicates that FMM exhibits the highest performance prediction considering the power while the ANN-PSO and ANFIS model exhibit the highest performance considering the torque. This study demonstrates the suitability of soft computing techniques and hybrid algorithms for the prediction of Stirling engine characteristics and its potential to optimize time and experimental cost.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cheng CH, Yu YJ (2010) Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism. Rene Energy 35(11):2590–2601CrossRef Cheng CH, Yu YJ (2010) Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism. Rene Energy 35(11):2590–2601CrossRef
2.
Zurück zum Zitat Ahmed F, Huang H, Ahmed S, Wang X (2020) A comprehensive review on modeling and performance optimization of Stirling engine. Int J Energy Res 44(8):6098–6127CrossRef Ahmed F, Huang H, Ahmed S, Wang X (2020) A comprehensive review on modeling and performance optimization of Stirling engine. Int J Energy Res 44(8):6098–6127CrossRef
3.
Zurück zum Zitat Kolin I, Motor S (1991) History-theory-practice. Zagreb University Publications LTD, Dubrovnik Kolin I, Motor S (1991) History-theory-practice. Zagreb University Publications LTD, Dubrovnik
4.
Zurück zum Zitat Biwa T, Tashiro Y, Yazaki T (2008) How does Stirling engine work? J Power Energy Syst 2(5):1254–1260CrossRef Biwa T, Tashiro Y, Yazaki T (2008) How does Stirling engine work? J Power Energy Syst 2(5):1254–1260CrossRef
5.
Zurück zum Zitat Torres García M, Carvajal Trujillo E, Vélez Godiño JA, Sánchez Martínez D (2018) Thermodynamic model for performance analysis of a Stirling engine prototype. Energies 11(10):2655CrossRef Torres García M, Carvajal Trujillo E, Vélez Godiño JA, Sánchez Martínez D (2018) Thermodynamic model for performance analysis of a Stirling engine prototype. Energies 11(10):2655CrossRef
6.
Zurück zum Zitat Senft JR (1993) General analysis of the mechanical efficiency of reciprocating heat engines. J Franklin Inst 330(5):967–984CrossRef Senft JR (1993) General analysis of the mechanical efficiency of reciprocating heat engines. J Franklin Inst 330(5):967–984CrossRef
7.
Zurück zum Zitat Ahmadi MH, Ahmadi MA, Mehrpooya M, Rosen MA (2015) Using GMDH neural networks to model the power and torque of a stirling engine. Sustainability 7(2):2243–2255CrossRef Ahmadi MH, Ahmadi MA, Mehrpooya M, Rosen MA (2015) Using GMDH neural networks to model the power and torque of a stirling engine. Sustainability 7(2):2243–2255CrossRef
8.
Zurück zum Zitat Toghyani S, Ahmadi MH, Kasaeian A, Mohammadi AH (2016) Artificial neural network, ANN-PSO and ANN-ICA for modelling the Stirling engine. Int J Ambient Energy 37(5):456–468CrossRef Toghyani S, Ahmadi MH, Kasaeian A, Mohammadi AH (2016) Artificial neural network, ANN-PSO and ANN-ICA for modelling the Stirling engine. Int J Ambient Energy 37(5):456–468CrossRef
9.
Zurück zum Zitat Ahmadi MH, Aghaj SSG, Nazeri A (2013) Prediction of power in solar stirling heat engine by using neural network based on hybrid genetic algorithm and particle swarm optimization. Neural Comput Appl 22(6):1141–1150CrossRef Ahmadi MH, Aghaj SSG, Nazeri A (2013) Prediction of power in solar stirling heat engine by using neural network based on hybrid genetic algorithm and particle swarm optimization. Neural Comput Appl 22(6):1141–1150CrossRef
10.
Zurück zum Zitat Karabulut H, Çınar C, Oztürk E, Yücesu HS (2010) Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism. Renew Energy 35(1):138–143CrossRef Karabulut H, Çınar C, Oztürk E, Yücesu HS (2010) Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism. Renew Energy 35(1):138–143CrossRef
11.
Zurück zum Zitat Machesa MG, Tartibu LK, Tekweme FK, Okwu MO. Evaluation of the Stirling heat engine performance prediction using ANN-PSO and ANFIS models. In: 2019 6th International conference on soft computing & machine intelligence (ISCMI) 2019 Nov 19 (pp. 217–222). IEEE, New York. https://doi.org/10.1109/ISCMI47871.2019.9004406. Machesa MG, Tartibu LK, Tekweme FK, Okwu MO. Evaluation of the Stirling heat engine performance prediction using ANN-PSO and ANFIS models. In: 2019 6th International conference on soft computing & machine intelligence (ISCMI) 2019 Nov 19 (pp. 217–222). IEEE, New York. https://​doi.​org/​10.​1109/​ISCMI47871.​2019.​9004406.
12.
Zurück zum Zitat Momeni E, Armaghani DJ, Hajihassani M, Amin MFM (2015) Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 60:50–63CrossRef Momeni E, Armaghani DJ, Hajihassani M, Amin MFM (2015) Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 60:50–63CrossRef
13.
14.
Zurück zum Zitat Uhrig RE (1995) November. Introduction to artificial neural networks. In: Proceedings of IECON'95–21st annual conference on IEEE industrial electronics (Vol. 1, pp. 33–37). IEEE,New York. Uhrig RE (1995) November. Introduction to artificial neural networks. In: Proceedings of IECON'95–21st annual conference on IEEE industrial electronics (Vol. 1, pp. 33–37). IEEE,New York.
15.
Zurück zum Zitat Okwu MO, Chukwu VU, Oguoma O (2019) Application of artificial neural network model for cost optimization in a single-source, multi-destination system with non-deterministic inputs. In: Rojas I, Joya G, Catala A (eds) Advances in computational intelligence. IWANN 2019. Lecture Notes in Computer Science, vol 11507. Springer, Cham https://doi.org/10.1007/978-3-030-20518-8_45 Okwu MO, Chukwu VU, Oguoma O (2019) Application of artificial neural network model for cost optimization in a single-source, multi-destination system with non-deterministic inputs. In: Rojas I, Joya G, Catala A (eds) Advances in computational intelligence. IWANN 2019. Lecture Notes in Computer Science, vol 11507. Springer, Cham https://​doi.​org/​10.​1007/​978-3-030-20518-8_​45
16.
Zurück zum Zitat Karnin ED (1990) A simple procedure for pruning back-propagation trained neural networks. IEEE Trans Neural Netw 1(2):239–242CrossRef Karnin ED (1990) A simple procedure for pruning back-propagation trained neural networks. IEEE Trans Neural Netw 1(2):239–242CrossRef
17.
Zurück zum Zitat Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H (2018) State-of-the-art in artificial neural network applications: a survey. Heliyon 4(11):e00938CrossRef Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H (2018) State-of-the-art in artificial neural network applications: a survey. Heliyon 4(11):e00938CrossRef
18.
Zurück zum Zitat Machesa MGK, Tartibu LK, Tekweme FK, Okwu MO (2019) Prediction of oscillatory heat transfer coefficient in heat exchangers of thermo-acoustic systems, International mechanical engineering congress and exposition. In Proceedings of the ASME 2019, November 11–14, 2019, Salt Lake City, UT, USA. Machesa MGK, Tartibu LK, Tekweme FK, Okwu MO (2019) Prediction of oscillatory heat transfer coefficient in heat exchangers of thermo-acoustic systems, International mechanical engineering congress and exposition. In Proceedings of the ASME 2019, November 11–14, 2019, Salt Lake City, UT, USA.
19.
Zurück zum Zitat Okwu MO, Samuel OD, Otanocha OB et al (2020) Development of ternary models for prediction of biogas yield in a novel modular biodigester: a case of fuzzy Mamdani model (FMM), artificial neural network (ANN), and response surface methodology (RSM). Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-01113-1CrossRef Okwu MO, Samuel OD, Otanocha OB et al (2020) Development of ternary models for prediction of biogas yield in a novel modular biodigester: a case of fuzzy Mamdani model (FMM), artificial neural network (ANN), and response surface methodology (RSM). Biomass Conv Bioref. https://​doi.​org/​10.​1007/​s13399-020-01113-1CrossRef
20.
Zurück zum Zitat Giannetti N, Redoc MA, Sholahudinc JJ, Yamaguchi S, Saito K, Kim H (2020) Prediction of two-phase flow distribution in microchannel heat exchangers using artificial neural network. Int J Refrig 111:53–62CrossRef Giannetti N, Redoc MA, Sholahudinc JJ, Yamaguchi S, Saito K, Kim H (2020) Prediction of two-phase flow distribution in microchannel heat exchangers using artificial neural network. Int J Refrig 111:53–62CrossRef
21.
Zurück zum Zitat Aguel S, Meddeb Z, Jeday MR (2020) Parametric study and modeling of cross-flow heat exchanger fouling in phosphoric acid concentration plant using artificial neural network. J Process Control 84:133–145CrossRef Aguel S, Meddeb Z, Jeday MR (2020) Parametric study and modeling of cross-flow heat exchanger fouling in phosphoric acid concentration plant using artificial neural network. J Process Control 84:133–145CrossRef
22.
Zurück zum Zitat Davoudi E, Vaferi B (2018) Applying artificial neural networks for systematic estimation of degree of fouling in heat exchangers. Chem Eng Res Des 130:138–153.CrossRef Davoudi E, Vaferi B (2018) Applying artificial neural networks for systematic estimation of degree of fouling in heat exchangers. Chem Eng Res Des 130:138–153.CrossRef
23.
Zurück zum Zitat Xiaoqiang W, Qinglong M, Jianguo W, Zhoulei J (2017) A multi-resolution wavelet neural network approach for fouling resistance forecasting of a plate heat exchanger. Appl Soft Comput 57:177–196CrossRef Xiaoqiang W, Qinglong M, Jianguo W, Zhoulei J (2017) A multi-resolution wavelet neural network approach for fouling resistance forecasting of a plate heat exchanger. Appl Soft Comput 57:177–196CrossRef
24.
Zurück zum Zitat Mohaghegh SD (2000) Virtual-intelligence applications in petroleum engineering: part 3- fuzzy logic. SPE 62415, Distinguished Authors Series Mohaghegh SD (2000) Virtual-intelligence applications in petroleum engineering: part 3- fuzzy logic. SPE 62415, Distinguished Authors Series
27.
Zurück zum Zitat Nwachukwu A (2019) (2018) A review of fuzzy logic applications in petroleum exploration, production and distribution operations. J Petrol Exploration Prod Technol 9:155–1568 Nwachukwu A (2019) (2018) A review of fuzzy logic applications in petroleum exploration, production and distribution operations. J Petrol Exploration Prod Technol 9:155–1568
28.
Zurück zum Zitat Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685CrossRef Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685CrossRef
31.
Zurück zum Zitat Karaboga D, Kaya E (2019) Adaptive network-based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artif Intell Rev 52(4):2263–2293CrossRef Karaboga D, Kaya E (2019) Adaptive network-based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artif Intell Rev 52(4):2263–2293CrossRef
32.
Zurück zum Zitat Dehghani MH, Riahi-Madvar M, Hooshyaripor M et al (2019) Prediction of hydropower generation using Grey wolf optimization adaptive neuro-fuzzy inference system. Energies 12:1–20CrossRef Dehghani MH, Riahi-Madvar M, Hooshyaripor M et al (2019) Prediction of hydropower generation using Grey wolf optimization adaptive neuro-fuzzy inference system. Energies 12:1–20CrossRef
33.
Zurück zum Zitat Riahi-Madvar H, Dehghani M, Seifi A et al (2019) Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry. Eng Appl Comput Fluid Mech 13:529–550 Riahi-Madvar H, Dehghani M, Seifi A et al (2019) Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry. Eng Appl Comput Fluid Mech 13:529–550
34.
Zurück zum Zitat Rukhaiyar S, Alam MN, Samadhiya NK (2018) A PSO-ANN hybrid model for predicting factor of safety of slope. Int J Geotech Eng 12(6):556–566 Rukhaiyar S, Alam MN, Samadhiya NK (2018) A PSO-ANN hybrid model for predicting factor of safety of slope. Int J Geotech Eng 12(6):556–566
35.
Zurück zum Zitat Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory; 1995. In: Sixth international symposium on micro machine and human science. IEEE, Washington, DC, USA. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory; 1995. In: Sixth international symposium on micro machine and human science. IEEE, Washington, DC, USA.
Metadaten
Titel
Performance analysis of stirling engine using computational intelligence techniques (ANN & Fuzzy Mamdani Model) and hybrid algorithms (ANN-PSO & ANFIS)
verfasst von
M. G. K. Machesa
L. K. Tartibu
M. O. Okwu
Publikationsdatum
24.05.2022
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 2/2023
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-022-07385-0

Weitere Artikel der Ausgabe 2/2023

Neural Computing and Applications 2/2023 Zur Ausgabe

Premium Partner