Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.06.2015 | Ausgabe 3/2015

Designs, Codes and Cryptography 3/2015

Permutation codes invariant under isometries

Zeitschrift:
Designs, Codes and Cryptography > Ausgabe 3/2015
Autoren:
Ingo Janiszczak, Wolfgang Lempken, Patric R. J. Östergård, Reiner Staszewski
Wichtige Hinweise
Communicated by K. Metsch.

Abstract

The symmetric group \(S_n\) on \(n\) letters is a metric space with respect to the Hamming distance. The corresponding isometry group is well known to be isomorphic to the wreath product \(S_n \wr S_2\). A subset of \(S_n\) is called a permutation code or a permutation array, and the largest possible size of a permutation code with minimum Hamming distance \(d\) is denoted by \(M(n, d)\). Using exhaustive search by computer on sets of orbits of isometry subgroups \(U\) we are able to determine serveral new lower bounds for \(M(n,d)\) for \(n \le 22\). The codes are given by the group \(U\) and representatives of the \(U\)-orbits.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2015

Designs, Codes and Cryptography 3/2015 Zur Ausgabe

Premium Partner

    Bildnachweise