Skip to main content
Erschienen in: Tribology Letters 3/2022

01.09.2022 | Original Paper

Phononic Friction in Monolayer/Bilayer Graphene

verfasst von: Yun Dong, Weibin Hui, Fangming Lian, Yusong Ding, Zhiyuan Rui

Erschienen in: Tribology Letters | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Herein, frictional phonon dissipation in monolayer/bilayer graphene was modeled using phonon spectra based on molecular dynamics simulations. The results indicate that the number of excited acoustic phonon modes is the primary reason for increased friction. Specifically, the frequencies of flexural acoustic modes shifted to high levels as thickness increased during the sliding process, resulting in increased friction. The increase in friction with sliding velocity is caused by an increase in the number of in-plane acoustic modes. Higher normal loads can increase both the in-plane and flexural acoustic modes, leading to increased friction. Our observations further suggest that the variation in temperature at the friction interface results from the competition between frictional energy and thermal conductivity. Both high normal loads and thick layers increase the thermal conductivity, ultimately improving the friction dissipation efficiency. Hence, it can be concluded that the increase in thermal conductivity is the reason for the counterintuitive decrease in the interfacial temperature resulting from high friction.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Berman, D., Deshmukh, S.A., Sankaranarayanan, S.K., Erdemir, A., Sumant, A.V.: Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348, 1118–1122 (2015)CrossRef Berman, D., Deshmukh, S.A., Sankaranarayanan, S.K., Erdemir, A., Sumant, A.V.: Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348, 1118–1122 (2015)CrossRef
2.
Zurück zum Zitat Li, S., Li, Q., Carpick, R.W., Gumbsch, P., Liu, X.Z., Ding, X., et al.: The evolving quality of frictional contact with graphene. Nature 539, 541–545 (2016)CrossRef Li, S., Li, Q., Carpick, R.W., Gumbsch, P., Liu, X.Z., Ding, X., et al.: The evolving quality of frictional contact with graphene. Nature 539, 541–545 (2016)CrossRef
3.
Zurück zum Zitat Xu, J., Luo, T., Chen, X., Zhang, C., Luo, J.: Nanostructured tribolayer-dependent lubricity of graphene and modified graphene nanoflakes on sliding steel surfaces in humid air. Tribol. Int. 145, 106203 (2020)CrossRef Xu, J., Luo, T., Chen, X., Zhang, C., Luo, J.: Nanostructured tribolayer-dependent lubricity of graphene and modified graphene nanoflakes on sliding steel surfaces in humid air. Tribol. Int. 145, 106203 (2020)CrossRef
4.
Zurück zum Zitat Kumar, D., Jain, J., Gosvami, N.N.: Macroscale to nanoscale tribology of magnesium-based alloys: a review. Tribol. Lett. 70, 1–29 (2022)CrossRef Kumar, D., Jain, J., Gosvami, N.N.: Macroscale to nanoscale tribology of magnesium-based alloys: a review. Tribol. Lett. 70, 1–29 (2022)CrossRef
5.
Zurück zum Zitat Bai, L., Meng, Y., Zhang, V., Khan, Z.A.: Effect of surface topography on ZDDP Tribofilm formation during running-in stage subject to boundary lubrication. Tribol. Lett. 70, 1–16 (2022)CrossRef Bai, L., Meng, Y., Zhang, V., Khan, Z.A.: Effect of surface topography on ZDDP Tribofilm formation during running-in stage subject to boundary lubrication. Tribol. Lett. 70, 1–16 (2022)CrossRef
6.
Zurück zum Zitat Krim, J.: Atomic-scale origins of friction. Langmuir 12, 4564–4566 (1996)CrossRef Krim, J.: Atomic-scale origins of friction. Langmuir 12, 4564–4566 (1996)CrossRef
7.
Zurück zum Zitat Dong, Y., Tao, Y., Feng, R., Zhang, Y., Duan, Z., Cao, H.: Phonon dissipation in friction with commensurate–incommensurate transition between graphene membranes. Nanotechnology 31, 285711 (2020)CrossRef Dong, Y., Tao, Y., Feng, R., Zhang, Y., Duan, Z., Cao, H.: Phonon dissipation in friction with commensurate–incommensurate transition between graphene membranes. Nanotechnology 31, 285711 (2020)CrossRef
8.
Zurück zum Zitat Dong, Y., Duan, Z., Tao, Y., Wei, Z., Gueye, B., Zhang, Y., et al.: Friction evolution with transition from commensurate to incommensurate contacts between graphene layers. Tribol. Int. 136, 259–266 (2019)CrossRef Dong, Y., Duan, Z., Tao, Y., Wei, Z., Gueye, B., Zhang, Y., et al.: Friction evolution with transition from commensurate to incommensurate contacts between graphene layers. Tribol. Int. 136, 259–266 (2019)CrossRef
9.
Zurück zum Zitat Hu, Y.-Z., Ma, T.-B., Wang, H.: Energy dissipation in atomic-scale friction. Friction 1, 24–40 (2013)CrossRef Hu, Y.-Z., Ma, T.-B., Wang, H.: Energy dissipation in atomic-scale friction. Friction 1, 24–40 (2013)CrossRef
10.
Zurück zum Zitat Wei, Z., Duan, Z., Kan, Y., Zhang, Y., Chen, Y.: Phonon energy dissipation in friction between graphene/graphene interface. J. Appl. Phys. 127, 015105 (2020)CrossRef Wei, Z., Duan, Z., Kan, Y., Zhang, Y., Chen, Y.: Phonon energy dissipation in friction between graphene/graphene interface. J. Appl. Phys. 127, 015105 (2020)CrossRef
11.
Zurück zum Zitat Dong, Y., Ding, Y., Rui, Z., Lian, F., Hui, W., Wu, J., et al.: Tuning the interfacial friction force and thermal conductance by altering phonon properties at contact interface. Nanotechnology 33, 235401 (2022)CrossRef Dong, Y., Ding, Y., Rui, Z., Lian, F., Hui, W., Wu, J., et al.: Tuning the interfacial friction force and thermal conductance by altering phonon properties at contact interface. Nanotechnology 33, 235401 (2022)CrossRef
12.
Zurück zum Zitat Krim, J., Solina, D., Chiarello, R.: Nanotribology of a Kr monolayer: a quartz-crystal microbalance study of atomic-scale friction. Phys. Rev. Lett. 66, 181 (1991)CrossRef Krim, J., Solina, D., Chiarello, R.: Nanotribology of a Kr monolayer: a quartz-crystal microbalance study of atomic-scale friction. Phys. Rev. Lett. 66, 181 (1991)CrossRef
13.
Zurück zum Zitat Cieplak, M., Smith, E.D., Robbins, M.O.: Molecular origins of friction: the force on adsorbed layers. Science 265, 1209–1212 (1994)CrossRef Cieplak, M., Smith, E.D., Robbins, M.O.: Molecular origins of friction: the force on adsorbed layers. Science 265, 1209–1212 (1994)CrossRef
14.
Zurück zum Zitat Persson, B., Ryberg, R.: Brownian motion and vibrational phase relaxation at surfaces: CO on Ni (111). Phys. Rev. B 32, 3586 (1985)CrossRef Persson, B., Ryberg, R.: Brownian motion and vibrational phase relaxation at surfaces: CO on Ni (111). Phys. Rev. B 32, 3586 (1985)CrossRef
15.
Zurück zum Zitat Sokoloff, J.: Possible nearly frictionless sliding for mesoscopic solids. Phys. Rev. Lett. 71, 3450 (1993)CrossRef Sokoloff, J.: Possible nearly frictionless sliding for mesoscopic solids. Phys. Rev. Lett. 71, 3450 (1993)CrossRef
16.
Zurück zum Zitat Torres, E.S., Gonçalves, S., Scherer, C., Kiwi, M.: Nanoscale sliding friction versus commensuration ratio: molecular dynamics simulations. Phys. Rev. B 73, 035434 (2006)CrossRef Torres, E.S., Gonçalves, S., Scherer, C., Kiwi, M.: Nanoscale sliding friction versus commensuration ratio: molecular dynamics simulations. Phys. Rev. B 73, 035434 (2006)CrossRef
17.
Zurück zum Zitat Prasad, M.V., Bhattacharya, B.: Phononic origins of friction in carbon nanotube oscillators. Nano Lett. 17, 2131–2137 (2017)CrossRef Prasad, M.V., Bhattacharya, B.: Phononic origins of friction in carbon nanotube oscillators. Nano Lett. 17, 2131–2137 (2017)CrossRef
18.
Zurück zum Zitat Chen, Y., Yang, J., Wang, X., Ni, Z., Li, D.: Temperature dependence of frictional force in carbon nanotube oscillators. Nanotechnology 20, 035704 (2008)CrossRef Chen, Y., Yang, J., Wang, X., Ni, Z., Li, D.: Temperature dependence of frictional force in carbon nanotube oscillators. Nanotechnology 20, 035704 (2008)CrossRef
19.
Zurück zum Zitat Cook, E.H., Buehler, M.J., Spakovszky, Z.S.: Mechanism of friction in rotating carbon nanotube bearings. J. Mech. Phys. Solids 61, 652–673 (2013)CrossRef Cook, E.H., Buehler, M.J., Spakovszky, Z.S.: Mechanism of friction in rotating carbon nanotube bearings. J. Mech. Phys. Solids 61, 652–673 (2013)CrossRef
20.
Zurück zum Zitat Cannara, R.J., Brukman, M.J., Cimatu, K., Sumant, A.V., Baldelli, S., Carpick, R.W.: Nanoscale friction varied by isotopic shifting of surface vibrational frequencies. Science 318, 780–783 (2007)CrossRef Cannara, R.J., Brukman, M.J., Cimatu, K., Sumant, A.V., Baldelli, S., Carpick, R.W.: Nanoscale friction varied by isotopic shifting of surface vibrational frequencies. Science 318, 780–783 (2007)CrossRef
21.
Zurück zum Zitat Wada, N., Ishikawa, M., Shiga, T., Shiomi, J., Suzuki, M., Miura, K.: Superlubrication by phonon confinement. Phys. Rev. B 97, 161403 (2018)CrossRef Wada, N., Ishikawa, M., Shiga, T., Shiomi, J., Suzuki, M., Miura, K.: Superlubrication by phonon confinement. Phys. Rev. B 97, 161403 (2018)CrossRef
22.
Zurück zum Zitat Liu, X.-Z., Ye, Z., Dong, Y., Egberts, P., Carpick, R.W., Martini, A.: Dynamics of atomic stick-slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds. Phys. Rev. Lett. 114, 146102 (2015)CrossRef Liu, X.-Z., Ye, Z., Dong, Y., Egberts, P., Carpick, R.W., Martini, A.: Dynamics of atomic stick-slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds. Phys. Rev. Lett. 114, 146102 (2015)CrossRef
24.
Zurück zum Zitat Zong, K., Qin, Z., Chu, F.: Modeling of frictional stick-slip of contact interfaces considering normal fractal contact. J. Appl. Mech. 89, 031003 (2022)CrossRef Zong, K., Qin, Z., Chu, F.: Modeling of frictional stick-slip of contact interfaces considering normal fractal contact. J. Appl. Mech. 89, 031003 (2022)CrossRef
25.
Zurück zum Zitat Duan, Z., Wei, Z., Huang, S., Wang, Y., Sun, C., Tao, Y., et al.: Resonance in atomic-scale sliding friction. Nano Lett. 21, 4615–4621 (2021)CrossRef Duan, Z., Wei, Z., Huang, S., Wang, Y., Sun, C., Tao, Y., et al.: Resonance in atomic-scale sliding friction. Nano Lett. 21, 4615–4621 (2021)CrossRef
26.
Zurück zum Zitat Filleter, T., McChesney, J.L., Bostwick, A., Rotenberg, E., Emtsev, K.V., Seyller, T., et al.: Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett. 102, 086102 (2009)CrossRef Filleter, T., McChesney, J.L., Bostwick, A., Rotenberg, E., Emtsev, K.V., Seyller, T., et al.: Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett. 102, 086102 (2009)CrossRef
27.
Zurück zum Zitat Seol, J.H., Jo, I., Moore, A.L., Lindsay, L., Aitken, Z.H., Pettes, M.T., et al.: Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010)CrossRef Seol, J.H., Jo, I., Moore, A.L., Lindsay, L., Aitken, Z.H., Pettes, M.T., et al.: Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010)CrossRef
28.
Zurück zum Zitat Chen, J., Walther, J.H., Koumoutsakos, P.: Strain engineering of Kapitza resistance in few-layer graphene. Nano Lett. 14, 819–825 (2014)CrossRef Chen, J., Walther, J.H., Koumoutsakos, P.: Strain engineering of Kapitza resistance in few-layer graphene. Nano Lett. 14, 819–825 (2014)CrossRef
29.
Zurück zum Zitat Zhang, Y.-Y., Pei, Q.-X., Jiang, J.-W., Wei, N., Zhang, Y.-W.: Thermal conductivities of single-and multi-layer phosphorene: a molecular dynamics study. Nanoscale 8, 483–491 (2016)CrossRef Zhang, Y.-Y., Pei, Q.-X., Jiang, J.-W., Wei, N., Zhang, Y.-W.: Thermal conductivities of single-and multi-layer phosphorene: a molecular dynamics study. Nanoscale 8, 483–491 (2016)CrossRef
30.
Zurück zum Zitat Li, X., Maute, K., Dunn, M.L., Yang, R.: Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B 81, 245318 (2010)CrossRef Li, X., Maute, K., Dunn, M.L., Yang, R.: Strain effects on the thermal conductivity of nanostructures. Phys. Rev. B 81, 245318 (2010)CrossRef
31.
Zurück zum Zitat Ishikawa, M., Wada, N., Miyakawa, T., Matsukawa, H., Suzuki, M., Sasaki, N., et al.: Experimental observation of phonon generation and propagation at a Mo S 2 (0001) surface in the friction process. Phys. Rev. B 93, 201401 (2016)CrossRef Ishikawa, M., Wada, N., Miyakawa, T., Matsukawa, H., Suzuki, M., Sasaki, N., et al.: Experimental observation of phonon generation and propagation at a Mo S 2 (0001) surface in the friction process. Phys. Rev. B 93, 201401 (2016)CrossRef
32.
Zurück zum Zitat Wang, J., Zhu, L., Chen, J., Li, B., Thong, J.T.: Suppressing thermal conductivity of suspended tri-layer graphene by gold deposition. Adv. Mater. 25, 6884–6888 (2013)CrossRef Wang, J., Zhu, L., Chen, J., Li, B., Thong, J.T.: Suppressing thermal conductivity of suspended tri-layer graphene by gold deposition. Adv. Mater. 25, 6884–6888 (2013)CrossRef
33.
Zurück zum Zitat Medyanik, S.N., Liu, W.K., Sung, I.-H., Carpick, R.W.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97, 136106 (2006)CrossRef Medyanik, S.N., Liu, W.K., Sung, I.-H., Carpick, R.W.: Predictions and observations of multiple slip modes in atomic-scale friction. Phys. Rev. Lett. 97, 136106 (2006)CrossRef
34.
Zurück zum Zitat Zhang, H., Guo, Z., Gao, H., Chang, T.: Stiffness-dependent interlayer friction of graphene. Carbon 94, 60–66 (2015)CrossRef Zhang, H., Guo, Z., Gao, H., Chang, T.: Stiffness-dependent interlayer friction of graphene. Carbon 94, 60–66 (2015)CrossRef
35.
Zurück zum Zitat Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef
36.
Zurück zum Zitat Lebedeva, I.V., Knizhnik, A.A., Popov, A.M., Ershova, O.V., Lozovik, Y.E., Potapkin, B.V.: Fast diffusion of a graphene flake on a graphene layer. Phys. Rev. B 82, 155460 (2010)CrossRef Lebedeva, I.V., Knizhnik, A.A., Popov, A.M., Ershova, O.V., Lozovik, Y.E., Potapkin, B.V.: Fast diffusion of a graphene flake on a graphene layer. Phys. Rev. B 82, 155460 (2010)CrossRef
37.
Zurück zum Zitat Lindsay, L., Broido, D.: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81, 205441 (2010)CrossRef Lindsay, L., Broido, D.: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81, 205441 (2010)CrossRef
38.
Zurück zum Zitat Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1988)CrossRef Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991 (1988)CrossRef
39.
Zurück zum Zitat Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)CrossRef Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)CrossRef
40.
Zurück zum Zitat Singer, I.L., Pollock, H.: Fundamentals of friction: macroscopic and microscopic processes. Springer Science & Business Media (2012) Singer, I.L., Pollock, H.: Fundamentals of friction: macroscopic and microscopic processes. Springer Science & Business Media (2012)
41.
Zurück zum Zitat Buldum, A., Leitner, D., Ciraci, S.: Model for phononic energy dissipation in friction. Phys. Rev. B 59, 16042 (1999)CrossRef Buldum, A., Leitner, D., Ciraci, S.: Model for phononic energy dissipation in friction. Phys. Rev. B 59, 16042 (1999)CrossRef
42.
Zurück zum Zitat Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116 (2009)CrossRef Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116 (2009)CrossRef
43.
Zurück zum Zitat Sun, J., Lu, Y., Feng, Y., Lu, Z., Zhang, G.A., Yuan, Y., et al.: Friction-load relationship in the adhesive regime revealing potential incapability of AFM investigations. Tribology Letters 68, 1–8 (2020)CrossRef Sun, J., Lu, Y., Feng, Y., Lu, Z., Zhang, G.A., Yuan, Y., et al.: Friction-load relationship in the adhesive regime revealing potential incapability of AFM investigations. Tribology Letters 68, 1–8 (2020)CrossRef
44.
Zurück zum Zitat Xu, L., Ma, T.-B., Hu, Y.-Z., Wang, H.: Vanishing stick–slip friction in few-layer graphenes: the thickness effect. Nanotechnology 22, 285708 (2011)CrossRef Xu, L., Ma, T.-B., Hu, Y.-Z., Wang, H.: Vanishing stick–slip friction in few-layer graphenes: the thickness effect. Nanotechnology 22, 285708 (2011)CrossRef
45.
Zurück zum Zitat Ma, F., Zheng, H., Sun, Y., Yang, D., Xu, K., Chu, P.K.: Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene. Appl. Phys. Lett. 101, 111904 (2012)CrossRef Ma, F., Zheng, H., Sun, Y., Yang, D., Xu, K., Chu, P.K.: Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene. Appl. Phys. Lett. 101, 111904 (2012)CrossRef
46.
Zurück zum Zitat Bonini, N., Garg, J., Marzari, N.: Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. Nano Lett. 12, 2673–2678 (2012)CrossRef Bonini, N., Garg, J., Marzari, N.: Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. Nano Lett. 12, 2673–2678 (2012)CrossRef
47.
Zurück zum Zitat Huang, P., Castellanos-Gomez, A., Guo, D., Xie, G., Li, J.: Frictional characteristics of suspended MoS2. The Journal of Physical Chemistry C 122, 26922–26927 (2018)CrossRef Huang, P., Castellanos-Gomez, A., Guo, D., Xie, G., Li, J.: Frictional characteristics of suspended MoS2. The Journal of Physical Chemistry C 122, 26922–26927 (2018)CrossRef
48.
Zurück zum Zitat Mounet, N., Marzari, N.: First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71, 205214 (2005)CrossRef Mounet, N., Marzari, N.: First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 71, 205214 (2005)CrossRef
49.
Zurück zum Zitat Woods, C., Britnell, L., Eckmann, A., Ma, R., Lu, J., Guo, H., et al.: Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451 (2014)CrossRef Woods, C., Britnell, L., Eckmann, A., Ma, R., Lu, J., Guo, H., et al.: Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451 (2014)CrossRef
50.
Zurück zum Zitat Shibuta, Y., Elliott, J.A.: Interaction between two graphene sheets with a turbostratic orientational relationship. Chem. Phys. Lett. 512, 146–150 (2011)CrossRef Shibuta, Y., Elliott, J.A.: Interaction between two graphene sheets with a turbostratic orientational relationship. Chem. Phys. Lett. 512, 146–150 (2011)CrossRef
51.
Zurück zum Zitat Lin, G.-R., Lo, T.-C., Tsai, L.-H., Pai, Y.-H., Cheng, C.-H., Wu, C.-I., et al.: Finite silicon atom diffusion induced size limitation on self-assembled silicon quantum dots in silicon-rich silicon carbide. J. Electrochem. Soc. 159, K35–K41 (2011)CrossRef Lin, G.-R., Lo, T.-C., Tsai, L.-H., Pai, Y.-H., Cheng, C.-H., Wu, C.-I., et al.: Finite silicon atom diffusion induced size limitation on self-assembled silicon quantum dots in silicon-rich silicon carbide. J. Electrochem. Soc. 159, K35–K41 (2011)CrossRef
52.
Zurück zum Zitat Patsha, A., Dhara, S.: Size-dependent localized phonon population in semiconducting Si nanowires. Nano Lett. 18, 7181–7187 (2018)CrossRef Patsha, A., Dhara, S.: Size-dependent localized phonon population in semiconducting Si nanowires. Nano Lett. 18, 7181–7187 (2018)CrossRef
53.
Zurück zum Zitat Li, J., Li, Y., Cao, P.-C., Qi, M., Zheng, X., Peng, Y.-G., et al.: Reciprocity of thermal diffusion in time-modulated systems. Nat. Commun. 13, 1–8 (2022) Li, J., Li, Y., Cao, P.-C., Qi, M., Zheng, X., Peng, Y.-G., et al.: Reciprocity of thermal diffusion in time-modulated systems. Nat. Commun. 13, 1–8 (2022)
54.
Zurück zum Zitat Guo, X., Tian, Q., Wang, Y., Liu, J., Jia, G., Dou, W., et al.: Phonon anharmonicities in 7-armchair graphene nanoribbons. Carbon 190, 312–318 (2022)CrossRef Guo, X., Tian, Q., Wang, Y., Liu, J., Jia, G., Dou, W., et al.: Phonon anharmonicities in 7-armchair graphene nanoribbons. Carbon 190, 312–318 (2022)CrossRef
56.
Zurück zum Zitat Zhang, Y., Wang, W., Zhang, F., Huang, L., Dai, K., Li, C., et al.: Micro-diamond assisted bidirectional tuning of thermal conductivity in multifunctional graphene nanoplatelets/nanofibrillated cellulose films. Carbon 189, 265–275 (2022)CrossRef Zhang, Y., Wang, W., Zhang, F., Huang, L., Dai, K., Li, C., et al.: Micro-diamond assisted bidirectional tuning of thermal conductivity in multifunctional graphene nanoplatelets/nanofibrillated cellulose films. Carbon 189, 265–275 (2022)CrossRef
57.
Zurück zum Zitat Qian, X., Zhou, J., Chen, G.: Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021)CrossRef Qian, X., Zhou, J., Chen, G.: Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021)CrossRef
Metadaten
Titel
Phononic Friction in Monolayer/Bilayer Graphene
verfasst von
Yun Dong
Weibin Hui
Fangming Lian
Yusong Ding
Zhiyuan Rui
Publikationsdatum
01.09.2022
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 3/2022
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-022-01612-4

Weitere Artikel der Ausgabe 3/2022

Tribology Letters 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.